Within-household clustering of genetically related Plasmodium falciparum infections in a moderate transmission area of Uganda.

Jessica Briggs, Alison Kuchta, Max Murphy, Sofonias Tessema, Emmanuel Arinaitwe, John Rek, Anna Chen, Joaniter I Nankabirwa, Chris Drakeley, David Smith, Teun Bousema, Moses Kamya, Isabel Rodriguez-Barraquer, Sarah Staedke, Grant Dorsey, Philip J Rosenthal, Bryan Greenhouse
Author Information
  1. Jessica Briggs: Department of Medicine, University of California San Francisco, San Francisco, CA, USA. jessica.briggs@ucsf.edu. ORCID
  2. Alison Kuchta: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
  3. Max Murphy: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
  4. Sofonias Tessema: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
  5. Emmanuel Arinaitwe: Infectious Diseases Research Collaboration, Kampala, Uganda.
  6. John Rek: Infectious Diseases Research Collaboration, Kampala, Uganda.
  7. Anna Chen: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
  8. Joaniter I Nankabirwa: Infectious Diseases Research Collaboration, Kampala, Uganda.
  9. Chris Drakeley: Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
  10. David Smith: Institute for Health Metrics & Evaluation, University of Washington, Seattle, WA, USA.
  11. Teun Bousema: Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
  12. Moses Kamya: Infectious Diseases Research Collaboration, Kampala, Uganda.
  13. Isabel Rodriguez-Barraquer: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
  14. Sarah Staedke: Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
  15. Grant Dorsey: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
  16. Philip J Rosenthal: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
  17. Bryan Greenhouse: Department of Medicine, University of California San Francisco, San Francisco, CA, USA.

Abstract

BACKGROUND: Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person).
METHODS: All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS).
RESULTS: As expected, genetic diversity was high (mean heterozygosity [H] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation.
CONCLUSIONS: Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.

Keywords

References

  1. Genetics. 2019 Aug;212(4):1337-1351 [PMID: 31209105]
  2. Trans R Soc Trop Med Hyg. 1989;83 Suppl:25-9 [PMID: 2576161]
  3. Am J Trop Med Hyg. 2017 Dec;97(6):1777-1781 [PMID: 29016335]
  4. Malar J. 2017 Apr 20;16(1):164 [PMID: 28427389]
  5. Elife. 2019 Apr 02;8: [PMID: 30938286]
  6. J Infect Dis. 2010 Jun 1;201(11):1764-74 [PMID: 20415536]
  7. Bull World Health Organ. 2000;78(12):1401-11 [PMID: 11196487]
  8. PLoS Genet. 2017 Oct 27;13(10):e1007065 [PMID: 29077712]
  9. PLoS One. 2015 Mar 13;10(3):e0118901 [PMID: 25768015]
  10. Nature. 2015 Oct 8;526(7572):207-211 [PMID: 26375008]
  11. Am J Trop Med Hyg. 2015 May;92(5):903-12 [PMID: 25778501]
  12. Malar J. 2016 Sep 15;15:470 [PMID: 27628178]
  13. PLoS Med. 2010 Jul 06;7(7):e1000304 [PMID: 20625549]
  14. PLoS Med. 2015 Mar 03;12(3):e1001788 [PMID: 25734259]
  15. Malar J. 2020 Jul 13;19(1):244 [PMID: 32660491]
  16. Nat Commun. 2019 Dec 9;10(1):5615 [PMID: 31819062]
  17. PLoS Med. 2016 Nov 8;13(11):e1002167 [PMID: 27824885]
  18. Elife. 2021 Aug 10;10: [PMID: 34372970]
  19. J Infect Dis. 2018 Aug 14;218(6):946-955 [PMID: 29718283]
  20. Infect Genet Evol. 2016 Apr;39:372-380 [PMID: 26472129]
  21. Elife. 2014 Apr 24;3:e02130 [PMID: 24843017]
  22. Wellcome Open Res. 2017 Feb 14;2:10 [PMID: 28612053]
  23. BMC Genomics. 2017 Nov 13;18(1):864 [PMID: 29132317]
  24. J Infect Dis. 2022 Apr 1;225(7):1227-1237 [PMID: 32840625]
  25. Nat Commun. 2017 Oct 26;8(1):1133 [PMID: 29074880]
  26. Parasit Vectors. 2016 Nov 29;9(1):614 [PMID: 27899135]
  27. PLoS Med. 2012 Jan;9(1):e1001165 [PMID: 22303287]
  28. Trends Parasitol. 2019 Oct;35(10):822-834 [PMID: 31474558]
  29. J Infect Dis. 2019 Apr 8;219(8):1254-1263 [PMID: 30445612]
  30. Wellcome Open Res. 2017 Sep 5;2:29 [PMID: 28944299]

Grants

  1. K24 AI144048/NIAID NIH HHS
  2. T32 AI007641/NIAID NIH HHS
  3. U19 AI089674/NIAID NIH HHS
  4. U19AI089674/National Institute of Allergy and Infectious Diseases

MeSH Term

Adult
Aged
Aged, 80 and over
Child
Cohort Studies
Genotype
Humans
Incidence
Malaria, Falciparum
Microsatellite Repeats
Middle Aged
Plasmodium falciparum
Uganda
Young Adult

Word Cloud

Created with Highcharts 10.0.0geneticmalariatransmissioninfectionsrelatednesspatternsmoderatehouseholdsdatahighUgandapermeanrelatedhigherelevationvs2detectableareasPlasmodiumfalciparumparticipantslocisamplesdiversitysignificantclusteringhighlydifferencemetreslower1person-year6p = 0BACKGROUND:EvaluationparasitesusefultoolunderstandingeasilyevaluatefeasibilitydetectingsettingmeasuredcohortrandomlyselectedKihihisub-countyannualentomologicalinoculationrate27 infectiousbitespersonMETHODS:detectedviamicroscopyPlasmodium-specificloopmediatedisothermalamplificationpassiveactivecasedetectionAugust2011-March2012genotyped26microsatelliteproviding349230living80PairwisecalculatedusingidentitystateIBSRESULTS:expectedheterozygosity[H] = 073majority765 %polyclonalDespitefine-scalepopulationstructurespatiotemporalAlthoughincidence1127versus1015modest4cases9respectivelymultiplicityinfection008strikinglyproportionwithin3 %09 %0005comparedCONCLUSIONS:GeneticrelativelysmallnumberdiversemultiallelicreflectedfinescaleGivenincreasinginterestapplyingaugmentsurveillancestudyprovidesevidencecanusedinformlocalspatialscalesevenWithin-householdgeneticallyareaClusteringGenotypingMalariaMicrosatelliteMolecularepidemiologyTransmission

Similar Articles

Cited By