Prominent Neutralizing Antibody Response Targeting the Glycoprotein Subunit Interface Elicited by Immunization.

Yimeng Wang, Katie A Howell, Jennifer Brannan, Krystle N Agans, Hannah L Turner, Ariel S Wirchnianski, Shweta Kailasan, Marnie Fusco, Andrey Galkin, Chi-I Chiang, Xuelian Zhao, Erica Ollmann Saphire, Kartik Chandran, Andrew B Ward, John M Dye, M Javad Aman, Thomas W Geisbert, Yuxing Li
Author Information
  1. Yimeng Wang: Institute for Bioscience and Biotechnology Research, Rockville, MD.
  2. Katie A Howell: Integrated BioTherapeutics, Inc., Rockville, MD.
  3. Jennifer Brannan: US Army Medical Research Institute of Infectious Diseases, Frederick, MD.
  4. Krystle N Agans: Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX.
  5. Hannah L Turner: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA.
  6. Ariel S Wirchnianski: Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY.
  7. Shweta Kailasan: Integrated BioTherapeutics, Inc., Rockville, MD.
  8. Marnie Fusco: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA.
  9. Andrey Galkin: Institute for Bioscience and Biotechnology Research, Rockville, MD.
  10. Chi-I Chiang: Institute for Bioscience and Biotechnology Research, Rockville, MD.
  11. Xuelian Zhao: Institute for Bioscience and Biotechnology Research, Rockville, MD.
  12. Erica Ollmann Saphire: La Jolla Institute for Immunology, La Jolla, CA. ORCID
  13. Kartik Chandran: Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY.
  14. Andrew B Ward: Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA. ORCID
  15. John M Dye: US Army Medical Research Institute of Infectious Diseases, Frederick, MD.
  16. M Javad Aman: Integrated BioTherapeutics, Inc., Rockville, MD.
  17. Thomas W Geisbert: Galveston National Laboratory and Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX.
  18. Yuxing Li: Institute for Bioscience and Biotechnology Research, Rockville, MD yuxingli@umd.edu. ORCID

Abstract

The severe death toll caused by the recent outbreak of Ebola virus disease reinforces the importance of developing ebolavirus prevention and treatment strategies. Here, we have explored the immunogenicity of a novel immunization regimen priming with vesicular stomatitis virus particles bearing Sudan Ebola virus (SUDV) glycoprotein (GP) that consists of GP1 & GP2 subunits and boosting with soluble SUDV GP in macaques, which developed robust neutralizing antibody (nAb) responses following immunizations. Moreover, EB46, a protective nAb isolated from one of the immune macaques, is found to target the GP1/GP2 interface, with GP-binding mode and neutralization mechanism similar to a number of ebolavirus nAbs from human and mouse, indicating that the ebolavirus GP1/GP2 interface is a common immunological target in different species. Importantly, selected immune macaque polyclonal sera showed nAb specificity similar to EB46 at substantial titers, suggesting that the GP1/GP2 interface region is a viable target for ebolavirus vaccine. The elicitation of sustained neutralizing antibody (nAb) responses against diverse ebolavirus strains remains as a high priority for the vaccine field. The most clinically advanced rVSV-ZEBOV vaccine could elicit moderate nAb responses against only one ebolavirus strain, EBOV, among the five ebolavirus strains, which last less than 6 months. Boost immunization strategies are desirable to effectively recall the rVSV vector-primed nAb responses to prevent infections in prospective epidemics, while an in-depth understanding of the specificity of immunization-elicited nAb responses is essential for improving vaccine performance. Here, using non-human primate animal model, we demonstrated that booster immunization with a stabilized trimeric soluble form of recombinant glycoprotein derived from the ebolavirus Sudan strain following the priming rVSV vector immunization led to robust nAb responses that substantially map to the subunit interface of ebolavirus glycoprotein, a common B cell repertoire target of multiple species including primates and rodents.

References

  1. EMBO J. 2012 Apr 18;31(8):1947-60 [PMID: 22395071]
  2. Nature. 2014 Oct 2;514(7520):47-53 [PMID: 25171469]
  3. Immunity. 2018 Aug 21;49(2):363-374.e10 [PMID: 30029854]
  4. FEMS Microbiol Rev. 2016 Jul;40(4):494-519 [PMID: 27268907]
  5. Cell. 2016 Jan 14;164(1-2):258-268 [PMID: 26771495]
  6. N Engl J Med. 2016 Apr 28;374(17):1647-60 [PMID: 25830326]
  7. J Virol. 2015 Oct 14;90(1):266-78 [PMID: 26468533]
  8. J Virol. 2017 Oct 13;91(21): [PMID: 28835491]
  9. J Struct Biol. 2007 Jan;157(1):38-46 [PMID: 16859925]
  10. J Virol. 1999 Jul;73(7):6024-30 [PMID: 10364354]
  11. Sci Transl Med. 2012 Jul 11;4(142):142ra96 [PMID: 22786681]
  12. J Struct Biol. 2009 Apr;166(1):95-102 [PMID: 19263523]
  13. J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
  14. mBio. 2016 Feb 23;7(1):e02154-15 [PMID: 26908579]
  15. N Engl J Med. 2017 Oct 12;377(15):1438-1447 [PMID: 29020589]
  16. J Immunol Methods. 2012 Dec 14;386(1-2):85-93 [PMID: 22989932]
  17. J Struct Biol. 2009 May;166(2):205-13 [PMID: 19374019]
  18. Cell. 2017 May 18;169(5):878-890.e15 [PMID: 28525755]
  19. Curr Opin Struct Biol. 2009 Aug;19(4):408-17 [PMID: 19559599]
  20. Cell. 2016 Jan 28;164(3):392-405 [PMID: 26806128]
  21. N Engl J Med. 2016 Aug 11;375(6):587-96 [PMID: 27509108]
  22. Virus Res. 2005 Oct;113(1):16-25 [PMID: 16139097]
  23. J Virol. 2010 Jan;84(1):163-75 [PMID: 19846533]
  24. Science. 2016 Mar 4;351(6277):1078-83 [PMID: 26912366]
  25. Vaccine. 2017 Jan 23;35(4):544-551 [PMID: 28024952]
  26. Cell Rep. 2016 May 17;15(7):1514-1526 [PMID: 27160900]
  27. Lancet Infect Dis. 2018 Jul;18(7):699-700 [PMID: 29627146]
  28. Science. 2005 Jun 10;308(5728):1643-5 [PMID: 15831716]
  29. N Engl J Med. 2019 Dec 12;381(24):2293-2303 [PMID: 31774950]
  30. J Immunol Methods. 2008 Jan 1;329(1-2):112-24 [PMID: 17996249]
  31. Methods Enzymol. 2003;374:461-91 [PMID: 14696385]
  32. J Infect Dis. 2018 Nov 22;218(suppl_5):S553-S564 [PMID: 29939318]
  33. Nature. 2008 Jul 10;454(7201):177-82 [PMID: 18615077]
  34. Bull World Health Organ. 1978;56(2):247-70 [PMID: 307455]
  35. Lancet. 2011 Mar 5;377(9768):849-62 [PMID: 21084112]
  36. Lancet. 1977 Mar 12;1(8011):571-3 [PMID: 65662]
  37. Front Immunol. 2014 Jun 02;5:250 [PMID: 24917864]
  38. Nat Struct Mol Biol. 2019 Mar;26(3):204-212 [PMID: 30833785]
  39. Sci Rep. 2016 Feb 10;6:20514 [PMID: 26861827]
  40. Trends Microbiol. 2016 Sep;24(9):684-686 [PMID: 27338027]
  41. Nat Struct Mol Biol. 2011 Nov 20;18(12):1424-7 [PMID: 22101933]
  42. J Struct Biol. 2003 Sep;143(3):185-200 [PMID: 14572474]
  43. Emerg Infect Dis. 2012 Sep;18(9):1480-3 [PMID: 22931687]
  44. Science. 2016 Oct 21;354(6310):350-354 [PMID: 27608667]
  45. Viruses. 2012 Apr;4(4):447-70 [PMID: 22590681]
  46. J Virol. 2015 Oct 14;90(1):279-91 [PMID: 26468532]
  47. Proc Natl Acad Sci U S A. 2014 Dec 2;111(48):17182-7 [PMID: 25404321]
  48. J Immunol. 2016 May 1;196(9):3729-43 [PMID: 27001953]
  49. Science. 2016 Mar 18;351(6279):1339-42 [PMID: 26917593]
  50. J Infect Dis. 2019 Jan 9;219(3):415-419 [PMID: 30203042]
  51. Science. 2016 Mar 18;351(6279):1343-6 [PMID: 26917592]
  52. Nature. 2011 Sep 22;477(7365):466-70 [PMID: 21849977]
  53. Cell. 2017 May 18;169(5):891-904.e15 [PMID: 28525756]
  54. Science. 2010 Aug 13;329(5993):856-61 [PMID: 20616233]
  55. Virology. 2013 Aug 1;442(2):97-100 [PMID: 23711383]

Grants

  1. R01 AI136756/NIAID NIH HHS
  2. R41 AI147929/NIAID NIH HHS
  3. UL1 TR001442/NCATS NIH HHS
  4. R01 AI102766/NIAID NIH HHS
  5. R01 AI134824/NIAID NIH HHS
  6. P30 AI036214/NIAID NIH HHS
  7. R01 AI126587/NIAID NIH HHS
  8. U19 AI109762/NIAID NIH HHS
  9. U19 AI142790/NIAID NIH HHS

Word Cloud

Created with Highcharts 10.0.0ebolavirusnAbresponsesimmunizationtargetinterfacevaccinevirusglycoproteinGP1/GP2EbolastrategiesprimingSudanSUDVGPsolublemacaquesrobustneutralizingantibodyfollowingEB46oneimmunesimilarcommonspeciesspecificitystrainsstrainrVSVseveredeathtollcausedrecentoutbreakdiseasereinforcesimportancedevelopingpreventiontreatmentexploredimmunogenicitynovelregimenvesicularstomatitisparticlesbearingconsistsGP1&GP2subunitsboostingdevelopedimmunizationsMoreoverprotectiveisolatedfoundGP-bindingmodeneutralizationmechanismnumbernAbshumanmouseindicatingimmunologicaldifferentImportantlyselectedmacaquepolyclonalserashowedsubstantialtiterssuggestingregionviableelicitationsustaineddiverseremainshighpriorityfieldclinicallyadvancedrVSV-ZEBOVelicitmoderateEBOVamongfivelastless6monthsBoostdesirableeffectivelyrecallvector-primedpreventinfectionsprospectiveepidemicsin-depthunderstandingimmunization-elicitedessentialimprovingperformanceusingnon-humanprimateanimalmodeldemonstratedboosterstabilizedtrimericformrecombinantderivedvectorledsubstantiallymapsubunitBcellrepertoiremultipleincludingprimatesrodentsProminentNeutralizingAntibodyResponseTargetingGlycoproteinSubunitInterfaceElicitedImmunization

Similar Articles

Cited By