The molecular basis of socially mediated phenotypic plasticity in a eusocial paper wasp.

Benjamin A Taylor, Alessandro Cini, Christopher D R Wyatt, Max Reuter, Seirian Sumner
Author Information
  1. Benjamin A Taylor: Centre for Biodiversity & Environment Research, University College London, London, UK. benjamin.taylor.16@ucl.ac.uk. ORCID
  2. Alessandro Cini: Centre for Biodiversity & Environment Research, University College London, London, UK. ORCID
  3. Christopher D R Wyatt: Centre for Biodiversity & Environment Research, University College London, London, UK.
  4. Max Reuter: Department of Genetics, Evolution & Environment, University College London, London, UK. ORCID
  5. Seirian Sumner: Centre for Biodiversity & Environment Research, University College London, London, UK. ORCID

Abstract

Phenotypic plasticity, the ability to produce multiple phenotypes from a single genotype, represents an excellent model with which to examine the relationship between gene expression and phenotypes. Analyses of the molecular foundations of phenotypic plasticity are challenging, however, especially in the case of complex social phenotypes. Here we apply a machine learning approach to tackle this challenge by analyzing individual-level gene expression profiles of Polistes dominula paper wasps following the loss of a queen. We find that caste-associated gene expression profiles respond strongly to queen loss, and that this change is partly explained by attributes such as age but occurs even in individuals that appear phenotypically unaffected. These results demonstrate that large changes in gene expression may occur in the absence of outwardly detectable phenotypic changes, resulting here in a socially mediated de-differentiation of individuals at the transcriptomic level but not at the levels of ovarian development or behavior.

References

  1. Philos Trans R Soc Lond B Biol Sci. 2016 May 5;371(1693): [PMID: 27069046]
  2. Genome Biol Evol. 2018 Oct 1;10(10):2749-2758 [PMID: 30247544]
  3. Dev Dyn. 2013 Apr;242(4):388-99 [PMID: 23335393]
  4. Sci Adv. 2019 Jul 10;5(7):eaaw7006 [PMID: 31309157]
  5. Science. 2011 Jun 3;332(6034):1161-2 [PMID: 21636765]
  6. J Evol Biol. 2007 Mar;20(2):549-57 [PMID: 17305821]
  7. BMC Bioinformatics. 2012 Mar 13;13 Suppl 2:S11 [PMID: 22536862]
  8. Philos Trans R Soc Lond B Biol Sci. 2010 Dec 27;365(1560):3937-46 [PMID: 21078646]
  9. Science. 2016 Jan 1;351(6268):aac6633 [PMID: 26722000]
  10. Am J Pathol. 2003 Aug;163(2):691-700 [PMID: 12875988]
  11. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2018 May;204(5):449-463 [PMID: 29488013]
  12. Physiol Zool. 1948 Jan;21(1):1-13 [PMID: 18898533]
  13. Genome Res. 2018 Oct;28(10):1532-1542 [PMID: 30135090]
  14. BMC Bioinformatics. 2011 Jul 15;12:288 [PMID: 21756370]
  15. Bioinformatics. 2012 Dec 15;28(24):3211-7 [PMID: 23071270]
  16. Mol Ecol. 2016 Apr;25(8):1769-84 [PMID: 26859767]
  17. Mol Biol Evol. 2020 Jul 1;37(7):1964-1978 [PMID: 32134461]
  18. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  19. Proc Natl Acad Sci U S A. 2014 Dec 16;111(50):17929-34 [PMID: 25453090]
  20. Cancer Genomics Proteomics. 2018 Jan-Feb;15(1):41-51 [PMID: 29275361]
  21. Cell. 2017 Aug 10;170(4):748-759.e12 [PMID: 28802044]
  22. Naturwissenschaften. 2018 Jan 24;105(1-2):15 [PMID: 29368265]
  23. Proc Biol Sci. 2017 Apr 12;284(1852): [PMID: 28404777]
  24. Proc Biol Sci. 2009 May 7;276(1662):1593-601 [PMID: 19203923]
  25. J Evol Biol. 2012 Sep;25(9):1855-63 [PMID: 22817109]
  26. Nature. 2011 Jul 20;476(7358):101-4 [PMID: 21775990]
  27. Curr Opin Insect Sci. 2018 Feb;25:25-34 [PMID: 29602359]
  28. Annu Rev Entomol. 2017 Jan 31;62:419-442 [PMID: 27912247]
  29. Am Nat. 2010 Aug;176(2):123-30 [PMID: 20515411]
  30. Science. 2018 Jul 27;361(6400):398-402 [PMID: 30049879]
  31. J Insect Physiol. 2005 Sep;51(9):969-73 [PMID: 15941571]
  32. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  33. PLoS One. 2012;7(1):e30857 [PMID: 22303464]
  34. Bioinformatics. 2010 Feb 1;26(3):392-8 [PMID: 19942583]
  35. BMC Biol. 2018 Aug 13;16(1):89 [PMID: 30103762]
  36. BMC Genomics. 2014 Jan 28;15:75 [PMID: 24472515]
  37. Genome Biol. 2019 Nov 14;20(1):238 [PMID: 31727128]
  38. Nat Biotechnol. 2006 Dec;24(12):1565-7 [PMID: 17160063]
  39. Genome Biol. 2019 Dec 16;20(1):278 [PMID: 31842956]
  40. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  41. Sci Rep. 2016 Oct 17;6:35461 [PMID: 27748421]
  42. Proc Natl Acad Sci U S A. 2015 Nov 10;112(45):13970-5 [PMID: 26483466]
  43. Genome Biol Evol. 2017 Nov 1;9(11):3059-3072 [PMID: 29087523]
  44. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  45. Nucleic Acids Res. 2015 Jul 1;43(W1):W589-98 [PMID: 25897122]
  46. BMC Genomics. 2014 Oct 23;15:927 [PMID: 25344338]
  47. Trends Ecol Evol. 2010 May;25(5):275-82 [PMID: 20106547]
  48. Nat Methods. 2012 Jul;9(7):671-5 [PMID: 22930834]
  49. Anim Behav. 2014 Jun 1;92:263-270 [PMID: 24954950]
  50. Cell Syst. 2022 Sep 21;13(9):768-779.e4 [PMID: 36044898]

Grants

  1. BB/R003882/1/Biotechnology and Biological Sciences Research Council
  2. BB/S003681/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Adaptation, Physiological
Algorithms
Animals
Computational Biology
Female
Gene Expression Profiling
Gene Ontology
Gene Regulatory Networks
Humans
Machine Learning
Phenotype
Social Behavior
Transcriptome
Wasps

Word Cloud

Created with Highcharts 10.0.0geneexpressionplasticityphenotypesphenotypicmolecularprofilespaperlossqueenindividualschangessociallymediatedPhenotypicabilityproducemultiplesinglegenotyperepresentsexcellentmodelexaminerelationshipAnalysesfoundationschallenginghoweverespeciallycasecomplexsocialapplymachinelearningapproachtacklechallengeanalyzingindividual-levelPolistesdominulawaspsfollowingfindcaste-associatedrespondstronglychangepartlyexplainedattributesageoccursevenappearphenotypicallyunaffectedresultsdemonstratelargemayoccurabsenceoutwardlydetectableresultingde-differentiationtranscriptomiclevellevelsovariandevelopmentbehaviorbasiseusocialwasp

Similar Articles

Cited By