Latent Dirichlet allocation model for world trade analysis.

Diego Kozlowski, Viktoriya Semeshenko, Andrea Molinari
Author Information
  1. Diego Kozlowski: DRIVEN, FSTM, University of Luxembourg, Esch Sur Alzette, Luxembourg. ORCID
  2. Viktoriya Semeshenko: Universidad de Buenos Aires, Facultad de Ciencias Económicas, Buenos Aires, Caba, Argentina.
  3. Andrea Molinari: Universidad de Buenos Aires, Facultad de Ciencias Económicas, Buenos Aires, Caba, Argentina. ORCID

Abstract

International trade is one of the classic areas of study in economics. Its empirical analysis is a complex problem, given the amount of products, countries and years. Nowadays, given the availability of data, the tools used for the analysis can be complemented and enriched with new methodologies and techniques that go beyond the traditional approach. This new possibility opens a research gap, as new, data-driven, ways of understanding international trade, can help our understanding of the underlying phenomena. The present paper shows the application of the Latent Dirichlet allocation model, a well known technique in the area of Natural Language Processing, to search for latent dimensions in the product space of international trade, and their distribution across countries over time. We apply this technique to a dataset of countries' exports of goods from 1962 to 2016. The results show that this technique can encode the main specialisation patterns of international trade. On the country-level analysis, the findings show the changes in the specialisation patterns of countries over time. As traditional international trade analysis demands expert knowledge on a multiplicity of indicators, the possibility of encoding multiple known phenomena under a unique indicator is a powerful complement for traditional tools, as it allows top-down data-driven studies.

References

  1. Nature. 1999 Oct 21;401(6755):788-91 [PMID: 10548103]
  2. PLoS One. 2012;7(10):e47278 [PMID: 23094044]
  3. Sci Rep. 2019 Feb 27;9(1):2866 [PMID: 30814565]
  4. Science. 2007 Jul 27;317(5837):482-7 [PMID: 17656717]
  5. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  6. PLoS One. 2018 May 29;13(5):e0197575 [PMID: 29813083]
  7. Phys Rev E. 2017 Aug;96(2-1):022306 [PMID: 28950577]
  8. Proc Natl Acad Sci U S A. 2009 Jun 30;106(26):10570-5 [PMID: 19549871]
  9. BMC Bioinformatics. 2015;16 Suppl 6:S2 [PMID: 25916734]
  10. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Mar;89(3):032804 [PMID: 24730896]

MeSH Term

Commerce
Databases, Factual
Humans
Industry
International Cooperation
Models, Statistical
Natural Language Processing

Word Cloud

Created with Highcharts 10.0.0tradeanalysisinternationalcountriescannewtraditionaltechniquegiventoolspossibilitydata-drivenunderstandingphenomenaLatentDirichletallocationmodelknowntimeshowspecialisationpatternsInternationaloneclassicareasstudyeconomicsempiricalcomplexproblemamountproductsyearsNowadaysavailabilitydatausedcomplementedenrichedmethodologiestechniquesgobeyondapproachopensresearchgapwayshelpunderlyingpresentpapershowsapplicationwellareaNaturalLanguageProcessingsearchlatentdimensionsproductspacedistributionacrossapplydatasetcountries'exportsgoods19622016resultsencodemaincountry-levelfindingschangesdemandsexpertknowledgemultiplicityindicatorsencodingmultipleuniqueindicatorpowerfulcomplementallowstop-downstudiesworld

Similar Articles

Cited By