Generative chemistry: drug discovery with deep learning generative models.

Yuemin Bian, Xiang-Qun Xie
Author Information
  1. Yuemin Bian: Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
  2. Xiang-Qun Xie: Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA. xix15@pitt.edu. ORCID

Abstract

The de novo design of molecular structures using deep learning generative models introduces an encouraging solution to drug discovery in the face of the continuously increased cost of new drug development. From the generation of original texts, images, and videos, to the scratching of novel molecular structures the creativity of deep learning generative models exhibits the height machine intelligence can achieve. The purpose of this paper is to review the latest advances in generative chemistry which relies on generative modeling to expedite the drug discovery process. This review starts with a brief history of artificial intelligence in drug discovery to outline this emerging paradigm. Commonly used chemical databases, molecular representations, and tools in cheminformatics and machine learning are covered as the infrastructure for generative chemistry. The detailed discussions on utilizing cutting-edge generative architectures, including recurrent neural network, variational autoencoder, adversarial autoencoder, and generative adversarial network for compound generation are focused. Challenges and future perspectives follow.

Keywords

References

  1. Front Pharmacol. 2020 Apr 17;11:269 [PMID: 32362822]
  2. ACS Cent Sci. 2018 Sep 26;4(9):1126-1133 [PMID: 30276245]
  3. J Med Chem. 2005 Jun 16;48(12):4111-9 [PMID: 15943484]
  4. Nucleic Acids Res. 2017 Jan 4;45(D1):D158-D169 [PMID: 27899622]
  5. Bioinformatics. 2017 Mar 1;33(5):685-692 [PMID: 28011771]
  6. J Cheminform. 2019 Jan 17;11(1):5 [PMID: 30656426]
  7. IEEE Trans Cybern. 2020 Sep;50(9):3826-3839 [PMID: 32203045]
  8. Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13 [PMID: 26400175]
  9. J Chem Inf Model. 2012 Nov 26;52(11):2864-75 [PMID: 23088335]
  10. Nucleic Acids Res. 2019 Jan 8;47(D1):D1102-D1109 [PMID: 30371825]
  11. CPT Pharmacometrics Syst Pharmacol. 2019 Mar;8(3):131-134 [PMID: 30549240]
  12. Mol Inform. 2018 Jan;37(1-2): [PMID: 29235269]
  13. Expert Opin Drug Discov. 2016;11(2):137-48 [PMID: 26558489]
  14. J Comput Chem. 2004 Jul 15;25(9):1157-74 [PMID: 15116359]
  15. J Chem Inf Model. 2009 May;49(5):1245-60 [PMID: 19364101]
  16. J Chem Inf Comput Sci. 2002 Nov-Dec;42(6):1273-80 [PMID: 12444722]
  17. Birth Defects Res C Embryo Today. 2015 Jun;105(2):140-56 [PMID: 26043938]
  18. IDrugs. 2006 Mar;9(3):199-204 [PMID: 16523386]
  19. J Chem Inf Model. 2020 Oct 26;60(10):4429-4435 [PMID: 32786694]
  20. Mol Pharm. 2018 Oct 1;15(10):4398-4405 [PMID: 30180591]
  21. Nat Rev Drug Discov. 2019 Jun;18(6):463-477 [PMID: 30976107]
  22. Nat Methods. 2018 Apr;15(4):233-234 [PMID: 30100822]
  23. Front Robot AI. 2019 Nov 05;6:108 [PMID: 33501123]
  24. J Comput Chem. 2010 Mar;31(4):671-90 [PMID: 19575467]
  25. J Cheminform. 2019 Dec 3;11(1):74 [PMID: 33430938]
  26. J Chem Inf Model. 2017 Feb 27;57(2):365-385 [PMID: 28072524]
  27. JAMA. 2020 Mar 03;323(9):844-853 [PMID: 32125404]
  28. Nature. 2015 May 28;521(7553):436-44 [PMID: 26017442]
  29. J Chem Inf Comput Sci. 2004 May-Jun;44(3):1177-85 [PMID: 15154787]
  30. J Chem Inf Model. 2020 Dec 28;60(12):5714-5723 [PMID: 32250616]
  31. J Med Chem. 2017 Feb 23;60(4):1238-1246 [PMID: 28001064]
  32. J Health Econ. 2016 May;47:20-33 [PMID: 26928437]
  33. Drug Discov Today. 2018 Aug;23(8):1538-1546 [PMID: 29750902]
  34. Biophys Rev. 2017 Apr;9(2):91-102 [PMID: 28510083]
  35. Mol Pharm. 2020 Jul 6;17(7):2628-2637 [PMID: 32422053]
  36. Curr Protein Pept Sci. 2007 Aug;8(4):312-28 [PMID: 17696866]
  37. Nucleic Acids Res. 2000 Jan 1;28(1):235-42 [PMID: 10592235]
  38. AAPS J. 2017 Jul;19(4):1235-1248 [PMID: 28560482]
  39. PLoS One. 2019 Jan 3;14(1):e0204378 [PMID: 30605479]
  40. Nature. 1996 Nov 7;384(6604 Suppl):23-6 [PMID: 8895597]
  41. Science. 2018 Jul 27;361(6400):360-365 [PMID: 30049875]
  42. Nat Commun. 2020 Jan 3;11(1):10 [PMID: 31900408]
  43. Curr Opin Biotechnol. 2020 Aug;64:210-217 [PMID: 32653805]
  44. Mol Pharm. 2019 Nov 4;16(11):4472-4484 [PMID: 31580683]
  45. Nat Methods. 2019 Dec;16(12):1315-1322 [PMID: 31636460]
  46. Neural Comput. 1997 Nov 15;9(8):1735-80 [PMID: 9377276]
  47. J Cheminform. 2012 Sep 18;4(1):22 [PMID: 22989151]
  48. J Chem Inf Model. 2019 Mar 25;59(3):1182-1196 [PMID: 30785751]
  49. Future Med Chem. 2019 Mar;11(6):567-597 [PMID: 30698019]
  50. NPJ Digit Med. 2019 May 30;2:43 [PMID: 31304389]
  51. Brief Bioinform. 2019 Sep 27;20(5):1878-1912 [PMID: 30084866]
  52. Mol Pharm. 2019 Jun 3;16(6):2605-2615 [PMID: 31013097]
  53. Nature. 2018 Mar 28;555(7698):604-610 [PMID: 29595767]
  54. Sci Adv. 2018 Jul 25;4(7):eaap7885 [PMID: 30050984]
  55. J Cheminform. 2018 Mar 7;10(1):9 [PMID: 29516311]
  56. Nucleic Acids Res. 2016 Jan 4;44(D1):D1045-53 [PMID: 26481362]
  57. Curr Med Chem. 2020;27(38):6495-6522 [PMID: 30182834]
  58. Brief Bioinform. 2021 Mar 22;22(2):882-895 [PMID: 32715315]
  59. Nucleic Acids Res. 2016 Jan 4;44(D1):D1220-8 [PMID: 26582922]
  60. Mol Pharm. 2017 Dec 4;14(12):4462-4475 [PMID: 29096442]
  61. Mol Inform. 2018 Jan;37(1-2): [PMID: 29095571]
  62. Nucleic Acids Res. 2017 Jan 4;45(D1):D945-D954 [PMID: 27899562]
  63. Nucleic Acids Res. 2014 Jan;42(Database issue):D510-6 [PMID: 24293647]
  64. AAPS J. 2018 Apr 9;20(3):59 [PMID: 29633051]
  65. J Cheminform. 2011 Oct 07;3:33 [PMID: 21982300]
  66. AAPS J. 2018 Mar 30;20(3):58 [PMID: 29603063]
  67. Proc Natl Acad Sci U S A. 2004 Mar 23;101(12):3999-4002 [PMID: 15024100]
  68. J Comput Aided Mol Des. 2013 Aug;27(8):675-9 [PMID: 23963658]
  69. Drug Discov Today. 2010 Jun;15(11-12):444-50 [PMID: 20362693]
  70. Comb Chem High Throughput Screen. 2009 May;12(4):344-57 [PMID: 19442064]
  71. BMC Bioinformatics. 2013 Aug 22;14:257 [PMID: 24103053]
  72. J Chem Inf Model. 2020 Apr 27;60(4):1983-1995 [PMID: 32195587]
  73. J Cheminform. 2017 Jun 6;9(1):33 [PMID: 29086040]
  74. Curr Top Med Chem. 2010;10(1):95-115 [PMID: 19929826]
  75. J Chem Inf Model. 2010 May 24;50(5):742-54 [PMID: 20426451]
  76. J Chem Inf Model. 2015 Nov 23;55(11):2324-37 [PMID: 26479676]
  77. J Cheminform. 2009 Jun 10;1(1):8 [PMID: 20298526]
  78. ACS Cent Sci. 2018 Jan 24;4(1):120-131 [PMID: 29392184]
  79. Mol Pharm. 2017 Sep 5;14(9):3098-3104 [PMID: 28703000]
  80. J Med Chem. 2020 May 28;63(10):5242-5256 [PMID: 32255647]
  81. Adv Drug Deliv Rev. 2016 Jun 1;101:34-41 [PMID: 27154268]
  82. J Comput Aided Mol Des. 2012 Jul;26(7):801-4 [PMID: 22644661]
  83. Drug Discov Today. 2020 Oct;25(10):1807-1821 [PMID: 32801051]
  84. Nat Rev Drug Discov. 2007 Mar;6(3):211-9 [PMID: 17290284]
  85. Mol Pharm. 2019 Nov 4;16(11):4451-4460 [PMID: 31589460]
  86. Curr Drug Discov Technol. 2006 Sep;3(3):155-65 [PMID: 17311561]
  87. ACS Cent Sci. 2018 Feb 28;4(2):268-276 [PMID: 29532027]
  88. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 [PMID: 29126136]
  89. Chem Rev. 2019 Sep 25;119(18):10520-10594 [PMID: 31294972]
  90. Acta Pharmacol Sin. 2019 Mar;40(3):374-386 [PMID: 30202014]
  91. J Cheminform. 2020 Jan 8;12(1):2 [PMID: 33431006]
  92. Mol Inform. 2018 Jan;37(1-2): [PMID: 29319225]
  93. J Chem Inf Model. 2018 Feb 26;58(2):252-261 [PMID: 29309147]
  94. Mol Inform. 2011 Oct;30(10):847-50 [PMID: 27468104]
  95. J Cheminform. 2015 May 30;7:23 [PMID: 26136848]
  96. J Comput Aided Mol Des. 2019 Apr;33(4):447-459 [PMID: 30840169]
  97. Nat Biotechnol. 2019 Sep;37(9):1038-1040 [PMID: 31477924]

Grants

  1. P30 DA035778/NIDA NIH HHS
  2. P30 DA035778A1/NIDA NIH HHS

MeSH Term

Artificial Intelligence
Deep Learning
Drug Discovery
Models, Chemical
Neural Networks, Computer

Word Cloud

Created with Highcharts 10.0.0generativelearningdrugdiscoverynetworkautoencodermoleculardeepmodelsadversarialGenerativestructuresgenerationmachineintelligencereviewchemistryneuraldenovodesignusingintroducesencouragingsolutionfacecontinuouslyincreasedcostnewdevelopmentoriginaltextsimagesvideosscratchingnovelcreativityexhibitsheightcanachievepurposepaperlatestadvancesreliesmodelingexpediteprocessstartsbriefhistoryartificialoutlineemergingparadigmCommonlyusedchemicaldatabasesrepresentationstoolscheminformaticscoveredinfrastructuredetaileddiscussionsutilizingcutting-edgearchitecturesincludingrecurrentvariationalcompoundfocusedChallengesfutureperspectivesfollowchemistry:AdversarialDeepDrugmodelRecurrentVariational

Similar Articles

Cited By (22)