Fitness optimization and evolution of permanent replicator systems.

Sergei Drozhzhin, Tatiana Yakushkina, Alexander S Bratus
Author Information
  1. Sergei Drozhzhin: Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, Moscow, Russia, 119992.
  2. Tatiana Yakushkina: Department of Business Informatics, National Research University Higher School of Economics, Moscow, Russia, 101000. tyakushkina@hse.ru. ORCID
  3. Alexander S Bratus: Institute of Management and Digital Technologies, Russian University of Transport, Moscow, Russia, 127994.

Abstract

In this paper, we discuss fitness landscape evolution of permanent replicator systems applying the hypothesis that the specific time of evolutionary adaptation of system parameters is much slower than the time of internal evolutionary dynamics. In other words, we suppose that the extremal principle of Darwinian evolution based on Fisher's fundamental theorem of natural selection is valid for the steady-states of permanent replicator systems. Various cases illustrating this concept are considered.

Keywords

References

  1. Adamski P, Eleveld M, Sood A, Kun Á, Szilágyi A, Czárán T, Szathmáry E, Otto S (2020) From self-replication to replicator systems en route to de novo life. Nat Rev Chem 4:386–403 [DOI: 10.1038/s41570-020-0196-x]
  2. Ao P (2005) Laws in Darwinian evolutionary theory. Phys Life Rev 2(2):117–156 [DOI: 10.1016/j.plrev.2005.03.002]
  3. Ao P (2009) Global view of bionetwork dynamics: adaptive landscape. J Genet Genomics 36(2):63–73 [DOI: 10.1016/S1673-8527(08)60093-4]
  4. Berge C (1957) Théorie générale des jeux à n personnes, vol 138. Gauthier-Villars, Paris
  5. Birch J (2016) Natural selection and the maximization of fitness. Biol Rev 91(3):712–727 [DOI: 10.1111/brv.12190]
  6. Boerlijst M, Hogeweg P (1991) Self-structuring and selection: spiral waves as a substrate for prebiotic evolution. SFI Stud Sci Complex 255–276
  7. Bratus AS, Drozhzhin S, Yakushkina T (2018) On the evolution of hypercycles. Math Biosci 306:119–125 [DOI: 10.1016/j.mbs.2018.09.001]
  8. Bratus AS, Semenov YS, Novozhilov AS (2018) Adaptive fitness landscape for replicator systems: to maximize or not to maximize. Math Model Nat Phenom 13(3):25 [DOI: 10.1051/mmnp/2018040]
  9. Charnov EL (1989) Phenotypic evolution under Fisher’s fundamental theorem of natural selection. Heredity 62(1):113 [DOI: 10.1038/hdy.1989.15]
  10. Cronhjort MB (1995) Hypercycles versus parasites in the origin of life: model dependence in spatial hypercycle systems. Orig Life Evol Biosph 25(1–3):227–233 [DOI: 10.1007/BF01581586]
  11. Edwards AW (1994) The fundamental theorem of natural selection. Biol Rev 69(4):443–474 [DOI: 10.1111/j.1469-185X.1994.tb01247.x]
  12. Eigen M (1971) Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften 58(10):465–523 [DOI: 10.1007/BF00623322]
  13. Eigen M, Schuster P (1977) A principle of natural self-organization. Naturwissenschaften 64(11):541–565 [DOI: 10.1007/BF00450633]
  14. Ewens WJ (1989) An interpretation and proof of the fundamental theorem of natural selection. Theor Popul Biol 36(2):167–180 [DOI: 10.1016/0040-5809(89)90028-2]
  15. Ewens WJ, Lessard S (2015) On the interpretation and relevance of the fundamental theorem of natural selection. Theor Popul Biol 104:59–67 [DOI: 10.1016/j.tpb.2015.07.002]
  16. Fisher RA (1999) The Genetical Theory of Natural Selection, Ed. with a foreword and notes by J. H. Bennett (A complete variorum ed.). Oxford University Press, Oxford
  17. Grafen A (2006) Optimization of inclusive fitness. J Theor Biol 238(3):541–563 [DOI: 10.1016/j.jtbi.2005.06.009]
  18. Grafen A (2008) The simplest formal argument for fitness optimization. J Genet 87(4):421–433 [DOI: 10.1007/s12041-008-0064-9]
  19. Hofbauer J, Sigmund K (1988) Dynamical systems and the theory of evolution. Cambridge University Press, Cambridge
  20. Hofbauer J, Sigmund K (1998) Evolutionary games and population dynamics. Cambridge University Press, Cambridge [DOI: 10.1017/CBO9781139173179]
  21. Károlyi G, Péntek Á, Scheuring I, Tél T, Toroczkai Z (2000) Chaotic flow: the physics of species coexistence. Proc Natl Acad Sci 97(25):13661–13665 [DOI: 10.1073/pnas.240242797]
  22. Kamimura A, Kaneko K (2019) Molecular diversity and network complexity in growing protocells. Life 9(2):53 [DOI: 10.3390/life9020053]
  23. Koonin EV (2011) The logic of chance: the nature and origin of biological evolution. FT Press, Upper Saddle River
  24. Lessard S (1997) Fisher’s fundamental theorem of natural selection revisited. Theor Popul Biol 52(2):119–136 [DOI: 10.1006/tpbi.1997.1324]
  25. Parker GA, Smith JM (1990) Optimality theory in evolutionary biology. Nature 348(6296):27 [DOI: 10.1038/348027a0]
  26. Poelwijk FJ, Kiviet DJ, Weinreich DM, Tans SJ (2007) Empirical fitness landscapes reveal accessible evolutionary paths. Nature 445(7126):383 [DOI: 10.1038/nature05451]
  27. Safro MV (2016) Asymptotics and limit behaviour of double hypercycle. Nonlinear World 22(1):1–14 (in Russian)
  28. Sardanyés J, Solé RV (2007) The role of cooperation and parasites in non-linear replicator delayed extinctions. Chaos Solitons Fract 31(5):1279–1296 [DOI: 10.1016/j.chaos.2006.04.029]
  29. Sardanyés J, Duarte J, Januário C, Martins N (2012) Topological entropy of catalytic sets: hypercycles revisited. Commun Nonlinear Sci Numer Simul 17(2):795–803 [DOI: 10.1016/j.cnsns.2011.06.020]
  30. Schuster P (2016) Increase in complexity and information through molecular evolution. Entropy 18(11):397 [DOI: 10.3390/e18110397]
  31. Schuster P, Sigmund K (1983) Replicator dynamics. J Theor Biol 100(3):533–538 [DOI: 10.1016/0022-5193(83)90445-9]
  32. Wright S (1932) The roles of mutation, inbreeding, crossbreeding and selection, in evolution. Proc Sixth Int Congr Gen 1:356–366

MeSH Term

Adaptation, Physiological
Biological Evolution
Genetic Fitness
Models, Genetic
Selection, Genetic

Word Cloud

Created with Highcharts 10.0.0evolutionpermanentreplicatorsystemslandscapetimeevolutionarysystemtheoremnaturalselectionFitnesspaperdiscussfitnessapplyinghypothesisspecificadaptationparametersmuchslowerinternaldynamicswordssupposeextremalprincipleDarwinianbasedFisher'sfundamentalvalidsteady-statesVariouscasesillustratingconceptconsideredoptimizationFisher’sModelPermanenceReplicator

Similar Articles

Cited By

No available data.