Dynamics of thiol-based redox switches: redox at its peak!

Johannes M Herrmann, Katja Becker, Tobias P Dick
Author Information
  1. Johannes M Herrmann: Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany. ORCID
  2. Katja Becker: Biochemistry and Molecular Biology, University of Giessen, Giessen, Germany.
  3. Tobias P Dick: Redox Regulation, German Cancer Research Center (DKFZ), Heidelberg, Germany. ORCID

Abstract

No abstract text available.

References

  1. Barbarino, F., Wäschenbach, L., Cavalho-Lemos, V., Dillenberger, M., Becker, K., Gohlke, H., and Cortese-Krott, M.M. (2021). Targeting spectrin redox switches to regulate the mechanoproperties of red blood cells. Biol. Chem. 402: 317–331, https://doi.org/10.1515/hsz-2020-0293.
  2. Breus, O. and Dickmeis, T. (2021). Genetically encoded thiol redox-sensors in the zebrafish model: lessons for embryonic development and regeneration. Biol. Chem. 402: 363–378, https://doi.org/10.1515/hsz-2020-0269.
  3. Buday, K. and Conrad, M. (2021). Emerging roles for non-selenium containing ER-resident glutathione peroxidases in cell signaling and disease. Biol. Chem. 402: 271–287, https://doi.org/10.1515/hsz-2020-0286.
  4. Herrmann, J.M. and Riemer, J. (2021). Apoptosis inducing factor and mitochondrial NADH dehydrogenases: redox-controlled gear boxes to switch between mitochondrial biogenesis and cell death. Biol. Chem. 402: 289–297, https://doi.org/10.1515/hsz-2020-0254.
  5. Linzner, N., Loi, V.V., Fritsch, V.N., and Antelmann, H. (2021). Thiol-based redox switches in the major pathogen Staphylococcus aureus. Biol. Chem. 402: 333–361, https://doi.org/10.1515/hsz-2020-0272.
  6. Lorenzen, I., Eble, J.A., and Hanschmann, E.-M. (2021). Thiol switches in membrane proteins - extracellular redox regulation in cell biology. Biol. Chem. 402: 253–269, https://doi.org/10.1515/hsz-2020-0266.
  7. Meyer, A.J., Dreyer, A., Ugalde, J.M., Feitosa-Araujo, E., Dietz, K.-J., and Schwarzländer, M. (2021). Shifting paradigms and novel players in Cys-based redox regulation and ROS signaling in plants - and where to go next. Biol. Chem. 402: 399–423, https://doi.org/10.1515/hsz-2020-0291.
  8. Pedre, B. and Dick, T.P. (2021). 3-Mercaptopyruvate sulfurtransferase: an enzyme at the crossroads of sulfane sulfur trafficking. Biol. Chem. 402: 223–237, https://doi.org/10.1515/hsz-2020-0249.
  9. Schwarzlander, M., Dick, T.P., Meyer, A.J., and Morgan, B. (2016). Dissecting redox biology using fluorescent protein sensors. Antioxidants Redox Signal. 24: 680–712, https://doi.org/10.1089/ars.2015.6266.
  10. Ulrich, K., Schwappach, B., and Jakob, U. (2021). Thiol-based switching mechanisms of stress-sensing chaperones. Biol. Chem. 402: 239–252, https://doi.org/10.1515/hsz-2020-0262.
  11. Varatnitskaya, M., Degrossoli, A., and Leichert, L.I. (2021). Redox regulation in host-pathogen interactions: thiol switches and beyond. Biol. Chem. 402: 299–316, https://doi.org/10.1515/hsz-2020-0264.
  12. Wittmann, D., Sinha, N., and Grimm, B. (2021). Thioredoxin-dependent control balance the metabolic activities in tetrapyrrole biosynthesis. Biol. Chem. 402: 379–397, https://doi.org/10.1515/hsz-2020-0308.

MeSH Term

Oxidation-Reduction
Protein Processing, Post-Translational
Proteins
Sulfhydryl Compounds

Chemicals

Proteins
Sulfhydryl Compounds

Word Cloud

Created with Highcharts 10.0.0redoxDynamicsthiol-basedswitches:peak!

Similar Articles

Cited By

No available data.