Enzyme mediated synthesis of hybrid polyedric gold nanoparticles.

Célia Arib, Jolanda Spadavecchia, Marc Lamy de la Chapelle
Author Information
  1. Célia Arib: CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux Et D'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France.
  2. Jolanda Spadavecchia: CNRS, UMR 7244, CSPBAT, Laboratoire de Chimie, Structures et Propriétés de Biomatériaux Et D'Agents Thérapeutiques Université Paris 13, Sorbonne Paris Cité, Bobigny, France. jolanda.spadavecchia@gmail.com.
  3. Marc Lamy de la Chapelle: Institut Des Molécules et Matériaux du Mans (IMMM-UMR CNRS 6283), Le Mans Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 9, France.

Abstract

Large protein complexes carry out some of the most complex activities in biology. Such structures are often assembled spontaneously through the process of self-assembly and have characteristic chemical or biological assets in the cellular mechanisms. Gold-based nanomaterials have attracted much attention in many areas of chemistry, physics and biosciences because of their size- and shape-dependent optic, electric, and catalytic properties. Here we report for the first time a one step synthesis in which Manganese Superoxide Dismutase protein plays a key role in the reduction of gold salts via the use of a Good's buffer (HEPES) to produce gold nanoparticles, compared to other proteins as catalase (CAT) and bovine serum albumin (BSA).We prove that this effect is directly related with the biological activities of the proteins that have an effect on the gold reduction mechanisms. Such synthesis route also induces the integration of proteins directly in the AuNPs that are intrinsically safe by design using a one-step production method. This is an important finding that will have uses in various applications, particularly in the green synthesis of novel nanomaterials.

References

  1. Nanoscale. 2014 Mar 21;6(6):3165-72 [PMID: 24496609]
  2. Nanoscale. 2011 May;3(5):2227-32 [PMID: 21461435]
  3. J Colloid Interface Sci. 2018 Mar 1;513:205-213 [PMID: 29153714]
  4. Chem Soc Rev. 2008 Sep;37(9):1783-91 [PMID: 18762828]
  5. Bioconjug Chem. 2018 Oct 17;29(10):3352-3361 [PMID: 30215508]
  6. Nano Today. 2016 Feb;11(1):41-60 [PMID: 27103939]
  7. Chem Soc Rev. 2018 Dec 21;47(24):9069-9105 [PMID: 30452046]
  8. Sci Rep. 2016 Jun 29;6:28900 [PMID: 27353703]
  9. ACS Appl Mater Interfaces. 2016 Aug 10;8(31):19946-57 [PMID: 27424920]
  10. Nanoscale Res Lett. 2015 May 08;10:213 [PMID: 25991916]
  11. Nanoscale. 2012 Mar 21;4(6):1871-80 [PMID: 22076024]
  12. ACS Omega. 2019 Sep 09;4(12):15269-15279 [PMID: 31552374]
  13. Nanoscale. 2017 Jun 29;9(25):8525-8554 [PMID: 28613299]
  14. Essays Biochem. 2015;59:1-41 [PMID: 26504249]
  15. Colloids Surf B Biointerfaces. 2020 Jan 1;185:110588 [PMID: 31654887]
  16. RSC Adv. 2019 Aug 8;9(42):24539-24559 [PMID: 35527869]
  17. Nanoscale Res Lett. 2019 Jul 30;14(1):258 [PMID: 31363863]
  18. Anal Biochem. 1988 Aug 15;173(1):111-5 [PMID: 2847586]
  19. R Soc Open Sci. 2019 Jun 12;6(6):190160 [PMID: 31312487]
  20. J Med Chem. 2020 Jul 9;63(13):7410-7421 [PMID: 32524814]
  21. Antioxid Redox Signal. 2014 Apr 1;20(10):1548-9 [PMID: 23924157]
  22. Bioconjug Chem. 2018 Apr 18;29(4):1261-1265 [PMID: 29461809]

Word Cloud

Created with Highcharts 10.0.0synthesisgoldproteinsproteinactivitiesbiologicalmechanismsnanomaterialsreductionnanoparticleseffectdirectlyLargecomplexescarrycomplexbiologystructuresoftenassembledspontaneouslyprocessself-assemblycharacteristicchemicalassetscellularGold-basedattractedmuchattentionmanyareaschemistryphysicsbiosciencessize-shape-dependentopticelectriccatalyticpropertiesreportfirsttimeonestepManganeseSuperoxideDismutaseplayskeyrolesaltsviauseGood'sbufferHEPESproducecomparedcatalaseCATbovineserumalbuminBSAWeproverelatedroutealsoinducesintegrationAuNPsintrinsicallysafedesignusingone-stepproductionmethodimportantfindingwillusesvariousapplicationsparticularlygreennovelEnzymemediatedhybridpolyedric

Similar Articles

Cited By