A graphene aptasensor for biomarker detection in human serum.

Xuejun Wang, Yibo Zhu, Timothy R Olsen, Na Sun, Wenjun Zhang, Renjun Pei, Qiao Lin
Author Information
  1. Xuejun Wang: Department of Mechanical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
  2. Yibo Zhu: Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
  3. Timothy R Olsen: Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.
  4. Na Sun: Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
  5. Wenjun Zhang: Department of Mechanical Engineering, East China University of Science and Technology, Shanghai, 200237, China.
  6. Renjun Pei: Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu, 215123, China.
  7. Qiao Lin: Department of Mechanical Engineering, Columbia University, New York, NY 10027, USA.

Abstract

This paper presents an affinity graphene nanosensor for detection of biomarkers in undiluted and non-desalted human serum. The affinity nanosensor is a field-effect transistor in which graphene serves as the conducting channel. The graphene surface is sequentially functionalized with a nanolayer of the polymer polyethylene glycol (PEG) and a biomarker-specific aptamer. The aptamer is able to specifically bind with and capture unlabeled biomarkers in serum. A captured biomarker induces a change in the electric conductivity of the graphene, which is measured in a buffer of optimally chosen ionic strength to determine the biomarker concentration. The PEG layer effectively rejects nonspecific adsorption of background molecules in serum while still allowing the aptamer to be readily accessible to serum-borne biomarkers and increases the effective Debye screening length on the graphene surface. Thus, the aptamer-biomarker binding sensitively changes the graphene conductivity, thereby achieving specific and label-free detection of biomarkers with high sensitivity and without the need to dilute or desalt the serum. Experimental results demonstrate that the graphene nanosensor is capable of specifically capturing human immunoglobulin E (IgE), used as a representative biomarker, in human serum in the concentration range of 50 pM-250 nM, with a resolution of 14.5 pM and a limit of detection of 47 pM.

Keywords

References

  1. Colloids Surf B Biointerfaces. 2011 Jun 1;84(2):421-6 [PMID: 21333504]
  2. Science. 2015 Jul 10;349(6244):165-8 [PMID: 26160941]
  3. J Immunol. 1996 Jul 1;157(1):221-30 [PMID: 8683119]
  4. Luminescence. 2013 Sep-Oct;28(5):662-6 [PMID: 22949376]
  5. ACS Appl Mater Interfaces. 2015 Aug 12;7(31):16953-9 [PMID: 26203889]
  6. Biochim Biophys Acta. 2016 Jan;1864(1):154-64 [PMID: 26307469]
  7. Nano Lett. 2014 Oct 8;14(10):5641-9 [PMID: 25184967]
  8. Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14633-14638 [PMID: 27930344]
  9. Clin Chim Acta. 2003 Aug;334(1-2):241-4 [PMID: 12867298]
  10. Small. 2010 Jan;6(2):195-200 [PMID: 19908274]
  11. Nano Lett. 2015 Mar 11;15(3):2143-8 [PMID: 25664395]
  12. J Am Chem Soc. 2005 Aug 31;127(34):11906-7 [PMID: 16117506]
  13. ACS Appl Mater Interfaces. 2015 Jun 24;7(24):13367-74 [PMID: 26029973]
  14. Nano Lett. 2008 Aug;8(8):2119-25 [PMID: 18298094]
  15. Science. 2004 Oct 22;306(5696):666-9 [PMID: 15499015]
  16. Diagnostics (Basel). 2017 Jul 26;7(3): [PMID: 28933752]
  17. Biosens Bioelectron. 2013 May 15;43:218-25 [PMID: 23313881]
  18. J Am Chem Soc. 2010 Dec 29;132(51):18012-3 [PMID: 21128665]
  19. ACS Nano. 2014 Mar 25;8(3):2632-8 [PMID: 24528470]
  20. Acta Naturae. 2013 Oct;5(4):34-43 [PMID: 24455181]
  21. Biosens Bioelectron. 2009 Apr 15;24(8):2499-503 [PMID: 19188059]
  22. Nat Protoc. 2012 Feb 09;7(3):445-52 [PMID: 22322217]
  23. Biosens Bioelectron. 2009 Feb 15;24(6):1801-5 [PMID: 18835770]
  24. Phys Chem Chem Phys. 2015 Jul 21;17(27):17638-45 [PMID: 26080999]
  25. Adv Mater. 2010 Apr 12;22(14):1649-53 [PMID: 20496398]
  26. Nanoscale. 2016 Mar 21;8(11):5815-9 [PMID: 26912374]
  27. Nanotechnology. 2013 Dec 13;24(49):495102 [PMID: 24231385]
  28. Biosens Bioelectron. 2013 Mar 15;41:621-6 [PMID: 23107386]
  29. Nano Lett. 2008 Dec;8(12):4365-72 [PMID: 19368004]
  30. Nano Lett. 2010 Sep 8;10(9):3464-6 [PMID: 20704323]
  31. Nano Lett. 2007 Nov;7(11):3405-9 [PMID: 17914853]
  32. Biosens Bioelectron. 2011 Dec 15;30(1):306-9 [PMID: 21937215]
  33. ACS Appl Mater Interfaces. 2017 Aug 23;9(33):27504-27511 [PMID: 28770993]
  34. Anal Chem. 2005 Apr 1;77(7):1963-70 [PMID: 15801725]
  35. Analyst. 2014 Jun 7;139(11):2627-40 [PMID: 24733714]
  36. J Clin Pathol. 2004 Sep;57(9):956-9 [PMID: 15333657]
  37. Proc Natl Acad Sci U S A. 2006 Jan 24;103(4):921-6 [PMID: 16418278]
  38. Biomicrofluidics. 2016 Feb 23;10(1):011910 [PMID: 26958097]

Grants

  1. R33 CA196470/NCI NIH HHS

Word Cloud

Created with Highcharts 10.0.0grapheneserumdetectionbiomarkershumanbiomarkernanosensoraptameraffinitysurfacePEGspecificallyconductivityconcentrationbindingpMpaperpresentsundilutednon-desaltedfield-effecttransistorservesconductingchannelsequentiallyfunctionalizednanolayerpolymerpolyethyleneglycolbiomarker-specificablebindcaptureunlabeledcapturedinduceschangeelectricmeasuredbufferoptimallychosenionicstrengthdeterminelayereffectivelyrejectsnonspecificadsorptionbackgroundmoleculesstillallowingreadilyaccessibleserum-borneincreaseseffectiveDebyescreeninglengthThusaptamer-biomarkersensitivelychangestherebyachievingspecificlabel-freehighsensitivitywithoutneeddilutedesaltExperimentalresultsdemonstratecapablecapturingimmunoglobulinEIgEusedrepresentativerange50pM-250nMresolution145limit47aptasensorAffinitysensingBiomarkerGrapheneHumanNonspecific

Similar Articles

Cited By