Methane and Carbon Dioxide Emissions From Reservoirs: Controls and Upscaling.

Jake J Beaulieu, Sarah Waldo, David A Balz, Will Barnett, Alexander Hall, Michelle C Platz, Karen M White
Author Information
  1. Jake J Beaulieu: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA. ORCID
  2. Sarah Waldo: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA. ORCID
  3. David A Balz: Pegasus Technical Services, Cincinnati, OH, USA.
  4. Will Barnett: Neptune Inc, Lakewood, CO, USA.
  5. Alexander Hall: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA. ORCID
  6. Michelle C Platz: Department of Civil and Environmental Engineering, University of South Florida, Tampa, FL, USA. ORCID
  7. Karen M White: United States Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA.

Abstract

Estimating carbon dioxide (CO) and methane (CH) emission rates from reservoirs is important for regional and national greenhouse gas inventories. A lack of methodologically consistent data sets for many parts of the world, including agriculturally intensive areas of the United States, poses a major challenge to the development of models for predicting emission rates. In this study, we used a systematic approach to measure CO and CH diffusive and ebullitive emission rates from 32 reservoirs distributed across an agricultural to forested land use gradient in the United States. We found that all reservoirs were a source of CH to the atmosphere, with ebullition being the dominant emission pathway in 75% of the systems. Ebullition was a negligible emission pathway for CO, and 65% of sampled reservoirs were a net CO sink. Boosted regression trees (BRTs), a type of machine learning algorithm, identified reservoir morphology and watershed agricultural land use as important predictors of emission rates. We used the BRT to predict CH emission rates for reservoirs in the U.S. state of Ohio and estimate they are the fourth largest anthropogenic CH source in the state. Our work demonstrates that CH emission rates for reservoirs in our study region can be predicted from information in readily available national geodatabases. Expanded sampling campaigns could generate the data needed to train models for upscaling in other U.S. regions or nationally.

References

  1. Nat Commun. 2019 Mar 26;10(1):1375 [PMID: 30914638]
  2. Ecosystems. 2018;21(4):657-674 [PMID: 31007569]
  3. Environ Sci Technol. 2015 Jul 07;49(13):7614-22 [PMID: 26061185]
  4. Environ Sci Technol. 2018 Feb 6;52(3):1165-1173 [PMID: 29262250]
  5. Environ Sci Technol. 2017 Feb 7;51(3):1267-1277 [PMID: 28068068]
  6. Sci Total Environ. 2019 Jan 1;646:958-971 [PMID: 30235649]
  7. Science. 1994 Sep 9;265(5178):1568-70 [PMID: 17801536]
  8. Environ Sci Technol. 2019 Jun 4;53(11):6420-6426 [PMID: 31117543]
  9. Glob Chang Biol. 2015 Mar;21(3):1124-39 [PMID: 25220765]
  10. Environ Sci Technol. 2013 Aug 6;47(15):8130-7 [PMID: 23799866]
  11. Braz J Biol. 2014 Aug;74(3 Suppl 1):S113-9 [PMID: 25627372]
  12. Environ Monit Assess. 2017 Jul;189(7):316 [PMID: 28589457]
  13. Science. 2011 Jan 7;331(6013):50 [PMID: 21212349]
  14. Environ Sci Technol. 2014 Oct 7;48(19):11100-8 [PMID: 25158047]
  15. Bioscience. 2016 Nov 1;66(11):949-964 [PMID: 32801383]
  16. Limnol Oceanogr. 2020 May 25;65(3):1-23 [PMID: 32801395]
  17. Ecosystems. 2018;21(5):1058-1071 [PMID: 30607138]
  18. Environ Sci Technol. 2011 Dec 1;45(23):9866-73 [PMID: 21985534]
  19. PLoS One. 2011;6(9):e25764 [PMID: 21984945]
  20. Freshw Sci. 2018 Jun 01;37:208-221 [PMID: 29963332]
  21. Limnol Oceanogr Lett. 2019 Mar 26;3(3):64-75 [PMID: 32076654]
  22. Environ Sci Technol. 2014 Dec 16;48(24):14499-507 [PMID: 25409278]
  23. Glob Chang Biol. 2015 Jan;21(1):6-8 [PMID: 25099878]
  24. J Anim Ecol. 2008 Jul;77(4):802-13 [PMID: 18397250]
  25. Environ Sci Technol. 2010 Apr 1;44(7):2419-25 [PMID: 20218543]

Grants

  1. EP-C-15-010/EPA
  2. EPA999999/Intramural EPA

Word Cloud

Created with Highcharts 10.0.0emissionCHratesreservoirsCOimportantnationaldataUnitedStatesmodelsstudyusedagriculturallandusesourcepathwayUSstateEstimatingcarbondioxidemethaneregionalgreenhousegasinventorieslackmethodologicallyconsistentsetsmanypartsworldincludingagriculturallyintensiveareasposesmajorchallengedevelopmentpredictingsystematicapproachmeasurediffusiveebullitive32distributedacrossforestedgradientfoundatmosphereebullitiondominant75%systemsEbullitionnegligible65%samplednetsinkBoostedregressiontreesBRTstypemachinelearningalgorithmidentifiedreservoirmorphologywatershedpredictorsBRTpredictOhioestimatefourthlargestanthropogenicworkdemonstratesregioncanpredictedinformationreadilyavailablegeodatabasesExpandedsamplingcampaignsgenerateneededtrainupscalingregionsnationallyMethaneCarbonDioxideEmissionsReservoirs:ControlsUpscaling

Similar Articles

Cited By (3)