A Machine Learning-Based Biological Drug-Target Interaction Prediction Method for a Tripartite Heterogeneous Network.

Ying Zheng, Zheng Wu
Author Information
  1. Ying Zheng: School of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha 410000, China.
  2. Zheng Wu: School of Computer & Communication Engineering, Changsha University of Science & Technology, Changsha 410000, China.

Abstract

Drug repositioning is the identification of interactions between drugs and target proteins in pharmaceutical sciences. Traditional large-scale validation through chemical experiments is time-consuming and expensive, while drug repositioning can drastically decrease the cost and duration taken by traditional drug development. With the rapid advancement of high-throughput technologies and the explosion of various biological and medical data, computational drug repositioning methods have been used to systematically identify potential drug-target interactions. Some of them are based on a particular class of machine learning algorithms called kernel methods. In this paper, we propose a new machine learning prediction method combining multiple kernels into a tripartite heterogeneous drug-target-disease interaction spaces in order to integrate multiple sources of biological information simultaneously. This novel network algorithm extends the traditional drug-target interaction bipartite graph to the third disease layer. Meanwhile, Gaussian kernel functions on heterogeneous networks and the regularized least square method of the Kronecker product are used to predict new drug-target interactions. The values of AUPR (area under the precision-recall curve) and AUC (the area under the receiver operating characteristic curve) of the proposed algorithm are significantly improved. Especially, the AUC values are improved to 0.99, 0.99, 0.97, and 0.96 on four benchmark data sets. These experimental results substantiate that the network topology can be used for predicting drug-target interactions.

References

  1. Artif Intell Med. 2015 Jan;63(1):41-9 [PMID: 25704113]
  2. BMC Syst Biol. 2018 Apr 24;12(Suppl 4):55 [PMID: 29745839]
  3. PLoS One. 2013 Apr 04;8(4):e60618 [PMID: 23593264]
  4. J Ginseng Res. 2017 Oct;41(4):534-539 [PMID: 29021701]
  5. J Biomol Struct Dyn. 2016;34(4):906-17 [PMID: 26849843]
  6. Clin Interv Aging. 2006;1(4):309-16 [PMID: 18046909]
  7. Nat Commun. 2019 Nov 19;10(1):5221 [PMID: 31745082]
  8. Bioinformatics. 2011 Nov 1;27(21):3036-43 [PMID: 21893517]
  9. Brief Bioinform. 2018 Sep 28;19(5):878-892 [PMID: 28334136]
  10. Bioinformatics. 2009 Sep 15;25(18):2397-403 [PMID: 19605421]
  11. J Clin Psychopharmacol. 2003 Oct;23(5):459-66 [PMID: 14520122]
  12. Bioinformatics. 2021 May 1;37(4):578-579 [PMID: 32818254]
  13. Bioinformatics. 2018 Apr 1;34(7):1164-1173 [PMID: 29186331]
  14. J Comput Aided Mol Des. 2018 Feb;32(2):321-330 [PMID: 29340865]
  15. BMC Med Genomics. 2016 Jul 30;9(1):51 [PMID: 27475327]
  16. Comput Struct Biotechnol J. 2020 Apr 13;18:1043-1055 [PMID: 32419905]
  17. Nat Rev Drug Discov. 2017 Jan;16(1):19-34 [PMID: 27910877]
  18. Sci Rep. 2017 Jan 12;7:40376 [PMID: 28079135]
  19. Mol Pharm. 2020 Oct 5;17(10):3952-3965 [PMID: 32845650]
  20. Brief Bioinform. 2021 Mar 22;22(2):1604-1619 [PMID: 32043521]
  21. Brief Bioinform. 2019 Sep 27;20(5):1878-1912 [PMID: 30084866]
  22. Bioinformatics. 2008 Jul 1;24(13):i232-40 [PMID: 18586719]
  23. Expert Opin Drug Discov. 2016 Jul;11(7):707-15 [PMID: 27186904]
  24. Bioinformatics. 2019 Dec 15;35(24):5191-5198 [PMID: 31116390]
  25. Nat Commun. 2017 Sep 18;8(1):573 [PMID: 28924171]
  26. IEEE/ACM Trans Comput Biol Bioinform. 2017 May-Jun;14(3):646-656 [PMID: 26890921]
  27. PLoS Comput Biol. 2020 Jul 15;16(7):e1008040 [PMID: 32667925]
  28. Nat Rev Genet. 2017 Sep;18(9):551-562 [PMID: 28607512]
  29. J Comput Aided Mol Des. 2018 May;32(5):633-642 [PMID: 29687309]
  30. Brief Bioinform. 2019 Jul 19;20(4):1465-1474 [PMID: 29420684]
  31. Clin Pharmacokinet. 2002;41(12):913-58 [PMID: 12222994]
  32. Nucleic Acids Res. 2018 Jan 4;46(D1):D1074-D1082 [PMID: 29126136]
  33. Proc Natl Acad Sci U S A. 2007 May 22;104(21):8685-90 [PMID: 17502601]

Word Cloud

Created with Highcharts 10.0.0interactionsdrug-target0repositioningdrugusedcantraditionalbiologicaldatamethodsmachinelearningkernelnewmethodmultipleheterogeneousinteractionnetworkalgorithmvaluesareacurveAUCimproved99DrugidentificationdrugstargetproteinspharmaceuticalsciencesTraditionallarge-scalevalidationchemicalexperimentstime-consumingexpensivedrasticallydecreasecostdurationtakendevelopmentrapidadvancementhigh-throughputtechnologiesexplosionvariousmedicalcomputationalsystematicallyidentifypotentialbasedparticularclassalgorithmscalledpaperproposepredictioncombiningkernelstripartitedrug-target-diseasespacesorderintegratesourcesinformationsimultaneouslynovelextendsbipartitegraphthirddiseaselayerMeanwhileGaussianfunctionsnetworksregularizedleastsquareKroneckerproductpredictAUPRprecision-recallreceiveroperatingcharacteristicproposedsignificantlyEspecially9796fourbenchmarksetsexperimentalresultssubstantiatetopologypredictingMachineLearning-BasedBiologicalDrug-TargetInteractionPredictionMethodTripartiteHeterogeneousNetwork

Similar Articles

Cited By