��-Adrenergic control of sarcolemmal Ca1.2 abundance by small GTPase Rab proteins.

Silvia G Del Villar, Taylor L Voelker, Maartje Westhoff, Gopireddy R Reddy, Heather C Spooner, Manuel F Navedo, Eamonn J Dickson, Rose E Dixon
Author Information
  1. Silvia G Del Villar: Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616. ORCID
  2. Taylor L Voelker: Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616. ORCID
  3. Maartje Westhoff: Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616. ORCID
  4. Gopireddy R Reddy: Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616. ORCID
  5. Heather C Spooner: Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616. ORCID
  6. Manuel F Navedo: Department of Pharmacology, School of Medicine, University of California, Davis, CA 95616. ORCID
  7. Eamonn J Dickson: Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616. ORCID
  8. Rose E Dixon: Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, CA 95616; redickson@ucdavis.edu. ORCID

Abstract

The number and activity of Ca1.2 channels in the cardiomyocyte sarcolemma tunes the magnitude of Ca-induced Ca release and myocardial contraction. ��-Adrenergic receptor () activation stimulates sarcolemmal insertion of Ca1.2. This supplements the preexisting sarcolemmal Ca1.2 population, forming large "superclusters" wherein neighboring channels undergo enhanced cooperative-gating behavior, amplifying Ca influx and myocardial contractility. Here, we determine this stimulated insertion is fueled by an internal reserve of early and recycling endosome-localized, presynthesized Ca1.2 channels. -activation decreased Ca1.2/endosome colocalization in ventricular myocytes, as it triggered "emptying" of endosomal Ca1.2 cargo into the t-tubule sarcolemma. We examined the rapid dynamics of this stimulated insertion process with live-myocyte imaging of channel trafficking, and discovered that Ca1.2 are often inserted into the sarcolemma as preformed, multichannel clusters. Similarly, entire clusters were removed from the sarcolemma during endocytosis, while in other cases, a more incremental process suggested removal of individual channels. The amplitude of the stimulated insertion response was doubled by coexpression of constitutively active Rab4a, halved by coexpression of dominant-negative Rab11a, and abolished by coexpression of dominant-negative mutant Rab4a. In ventricular myocytes, -stimulated recycling of Ca1.2 was diminished by both nocodazole and latrunculin-A, suggesting an essential role of the cytoskeleton in this process. Functionally, cytoskeletal disruptors prevented -activated Ca current augmentation. Moreover, -regulation of Ca1.2 was abolished when recycling was halted by coapplication of nocodazole and latrunculin-A. These findings reveal that -stimulation triggers an on-demand boost in sarcolemmal Ca1.2 abundance via targeted Rab4a- and Rab11a-dependent insertion of channels that is essential for -regulation of cardiac Ca1.2.

Keywords

References

  1. Neuron. 2013 May 8;78(3):483-97 [PMID: 23664615]
  2. Neuron. 2007 Aug 16;55(4):615-32 [PMID: 17698014]
  3. J Biol Chem. 2013 Dec 6;288(49):35358-71 [PMID: 24142691]
  4. Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16513-8 [PMID: 15545605]
  5. Mol Cell Biol. 1996 Dec;16(12):6879-86 [PMID: 8943343]
  6. Nat Rev Mol Cell Biol. 2004 Feb;5(2):121-32 [PMID: 15040445]
  7. J Am Heart Assoc. 2013 Dec 12;2(6):e000459 [PMID: 24334906]
  8. Nat Rev Mol Cell Biol. 2009 Aug;10(8):513-25 [PMID: 19603039]
  9. Biophys J. 2003 May;84(5):3007-21 [PMID: 12719232]
  10. iScience. 2018 Sep 28;7:1-15 [PMID: 30267672]
  11. Heart Rhythm. 2012 May;9(5):812-20 [PMID: 22138472]
  12. Mol Biol Cell. 2009 Jun;20(11):2774-84 [PMID: 19369423]
  13. J Biol Chem. 2009 Nov 20;284(47):32869-80 [PMID: 19797056]
  14. Nat Rev Mol Cell Biol. 2009 Sep;10(9):597-608 [PMID: 19696797]
  15. Am J Physiol Heart Circ Physiol. 2011 Jan;300(1):H262-70 [PMID: 20971764]
  16. Nature. 2001 Jun 7;411(6838):701-6 [PMID: 11395774]
  17. Am J Cardiol. 1976 Jun;37(7):1079-85 [PMID: 1274870]
  18. Exp Biol Med (Maywood). 2019 Nov;244(15):1255-1272 [PMID: 31398994]
  19. PLoS Biol. 2010 Feb 16;8(2):e1000312 [PMID: 20169111]
  20. Prog Biophys Mol Biol. 2004 Jan;84(1):29-59 [PMID: 14642867]
  21. J Mol Cell Cardiol. 2010 Jul;49(1):121-31 [PMID: 20188735]
  22. J Mol Biol. 2006 Jan 6;355(1):34-46 [PMID: 16298391]
  23. Nature. 2020 Jan;577(7792):695-700 [PMID: 31969708]
  24. Annu Rev Pharmacol Toxicol. 2008;48:537-68 [PMID: 18184106]
  25. Front Pharmacol. 2019 Feb 27;10:121 [PMID: 30873022]
  26. Proc Natl Acad Sci U S A. 2006 May 9;103(19):7500-5 [PMID: 16648270]
  27. J Mol Cell Cardiol. 2002 Mar;34(3):297-308 [PMID: 11945022]
  28. Biochim Biophys Acta Mol Cell Res. 2018 Sep;1865(9):1341-1355 [PMID: 29959960]
  29. J Gen Physiol. 2019 Sep 2;151(9):1116-1134 [PMID: 31371391]
  30. Circ Res. 2007 Mar 16;100(5):686-92 [PMID: 17293474]
  31. Traffic. 2007 Feb;8(2):110-23 [PMID: 17156409]
  32. J Mol Cell Cardiol. 2016 Apr;93:32-43 [PMID: 26902968]
  33. BMC Genomics. 2011 Jan 07;12:14 [PMID: 21214938]
  34. J Biol Chem. 1995 Dec 15;270(50):30036-44 [PMID: 8530407]
  35. J Cardiovasc Pharmacol. 1995 Feb;25(2):282-91 [PMID: 7752654]
  36. Psychophysiology. 2009 May;46(3):466-72 [PMID: 19496216]
  37. Am J Physiol Cell Physiol. 2011 May;300(5):C1023-33 [PMID: 21248079]
  38. PLoS One. 2013 May 30;8(5):e64462 [PMID: 23737983]
  39. Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1749-54 [PMID: 22307641]
  40. J Physiol. 2019 Apr;597(8):2139-2162 [PMID: 30714156]
  41. J Physiol. 1977 Jan;264(1):49-62 [PMID: 839456]
  42. Traffic. 2008 Nov;9(11):1958-71 [PMID: 18785920]
  43. Nat Med. 2018 Aug;24(8):1225-1233 [PMID: 29892068]
  44. Circ Res. 2012 Mar 30;110(7):978-89 [PMID: 22328533]
  45. Proc Natl Acad Sci U S A. 1990 Jan;87(2):753-7 [PMID: 1689051]
  46. Biochemistry. 2017 Jul 18;56(28):3669-3681 [PMID: 28613835]
  47. Circ Res. 2008 Apr 11;102(7):e54-64 [PMID: 18356540]
  48. J Biol Chem. 1997 Jun 6;272(23):14800-4 [PMID: 9169447]
  49. Cardiovasc Res. 2001 Feb 1;49(2):298-307 [PMID: 11164840]
  50. Neuron. 2018 Oct 24;100(2):314-329 [PMID: 30359599]
  51. Heart Fail Clin. 2012 Jan;8(1):143-64 [PMID: 22108734]

Grants

  1. R01 HL162825/NHLBI NIH HHS
  2. 15SDG25560035/American Heart Association-American Stroke Association
  3. R01 GM127513/NIGMS NIH HHS
  4. R01 GM129376/NIGMS NIH HHS
  5. R01 HL149127/NHLBI NIH HHS
  6. R01 HL121059/NHLBI NIH HHS
  7. R01 AG063796/NIA NIH HHS
  8. T32 GM099608/NIGMS NIH HHS

MeSH Term

Animals
Bridged Bicyclo Compounds, Heterocyclic
Calcium Channels, L-Type
Cell Line
Cells, Cultured
Endosomes
Female
Heart Ventricles
Humans
Mice
Mice, Inbred C57BL
Myocytes, Cardiac
Nocodazole
Protein Transport
Receptors, Adrenergic, beta
Sarcolemma
Thiazolidines
rab4 GTP-Binding Proteins

Chemicals

Bridged Bicyclo Compounds, Heterocyclic
CACNA1C protein, mouse
Calcium Channels, L-Type
Receptors, Adrenergic, beta
Thiazolidines
rab4 GTP-Binding Proteins
Nocodazole
latrunculin A

Word Cloud

Created with Highcharts 10.0.0Ca12channelsinsertionsarcolemmasarcolemmalCastimulatedrecyclingprocesschannelcoexpressionmyocardial��-AdrenergicreceptorventricularmyocytestraffickingclustersRab4adominant-negativeabolishednocodazolelatrunculin-Aessential-regulationabundancecardiacnumberactivitycardiomyocytetunesmagnitudeCa-inducedreleasecontractionactivationstimulatessupplementspreexistingpopulationforminglarge"superclusters"whereinneighboringundergoenhancedcooperative-gatingbehavioramplifyinginfluxcontractilitydeterminefueledinternalreserveearlyendosome-localizedpresynthesized-activationdecreased2/endosomecolocalizationtriggered"emptying"endosomalcargot-tubuleexaminedrapiddynamicslive-myocyteimagingdiscoveredofteninsertedpreformedmultichannelSimilarlyentireremovedendocytosiscasesincrementalsuggestedremovalindividualamplituderesponsedoubledconstitutivelyactivehalvedRab11amutant-stimulateddiminishedsuggestingrolecytoskeletonFunctionallycytoskeletaldisruptorsprevented-activatedcurrentaugmentationMoreoverhaltedcoapplicationfindingsreveal-stimulationtriggerson-demandboostviatargetedRab4a-Rab11a-dependentcontrolsmallGTPaseRabproteinsL-typecalciumEC-couplingionclustering��-adrenergic

Similar Articles

Cited By