Social predictors of food insecurity during the stay-at-home order due to the COVID-19 pandemic in Peru. Results from a cross-sectional web-based survey.

Jorge L Cañari-Casaño, Omaira Cochachin-Henostroza, Oliver A Elorreaga, Gandy Dolores-Maldonado, Anthony Aquino-Ramírez, Sindy Huaman-Gil, Juan P Giribaldi-Sierralta, Juan Pablo Aparco, Daniel A Antiporta, Mary E Penny
Author Information
  1. Jorge L Cañari-Casaño: Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia.
  2. Omaira Cochachin-Henostroza: Grupo de Investigación Nutobes, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  3. Oliver A Elorreaga: Clima, Latin American Center of Excellence for Climate Change and Health, Universidad Peruana Cayetano Heredia.
  4. Gandy Dolores-Maldonado: Escuela Profesional de Nutrición, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  5. Anthony Aquino-Ramírez: Grupo de Investigación Nutobes, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  6. Sindy Huaman-Gil: Escuela Profesional de Nutrición, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  7. Juan P Giribaldi-Sierralta: Escuela Profesional de Nutrición, Facultad de Medicina, Universidad Nacional Mayor de San Marcos, Lima, Perú.
  8. Juan Pablo Aparco: Centro Nacional de Alimentación y Nutrición, Instituto Nacional de Salud, Lima, Perú.
  9. Daniel A Antiporta: Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
  10. Mary E Penny: Nutrition Research Institute, Lima, Peru.

Abstract

BACKGROUND: Stay-at-home orders and social distancing have been implemented as the primary tools to reduce the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, this approach has indirectly lead to the unemployment of 2·3 million Peruvians, in Lima, Perú alone. As a result, the risk of food insecurity may have increased, especially in low-income families who rely on a daily wage. This study estimates the prevalence of moderate or severe food insecurity (MSFI) and identifies the associated factors that explain this outcome during the stay-at-home order.
METHODS: A cross-sectional web-based survey, with non-probabilistic sampling, was conducted between May 18 and June 30, 2020, during the stay-at-home order in Peru. We used social media advertisements on Facebook to reach 18-59-year-olds living in Peru. MSFI was assessed using the food insecurity Experience Scale (FIES). Rasch model methodology requirements were considered, and factors associated with MSFI were selected using stepwise forward selection. A Poisson generalized linear model (Poisson GLM), with log link function, was employed to estimate adjusted prevalence ratios (aPR).
FINDINGS: This analysis is based on 1846 replies. The prevalence of MSFI was 23·2%, and FIES proved to be an acceptable instrument with reliability 0·72 and infit 0·8-1·3. People more likely to experience MSFI were those with low income (less than 255 US$/month) in the pre-pandemic period (aPR 3·77; 95%CI, 1·98-7·16), those whose income was significantly reduced during the pandemic period (aPR 2·27; 95%CI, 1·55-3·31), and those whose savings ran out in less than 21 days (aPR 1·86; 95%CI, 1·43-2·42). Likewise, heads of households (aPR 1·20; 95%CI, 1·00-1·44) and those with probable SARS-CoV2 cases as relatives (aPR 1·29; 95%CI, 1·05-1·58) were at an increased risk of MSFI. Additionally, those who perceived losing weight during the pandemic (aPR 1·21; 95%CI, 1·01-1·45), and increases in processed foods prices (aPR 1·31; 95%CI, 1·08-1·59), and eating less minimally processed food (aPR 1·82; 95%CI, 1·48-2·24) were more likely to experience MSFI.
INTERPRETATION: People most at risk of MSFI were those in a critical economic situation before and during the pandemic. Social protection policies should be reinforced to prevent or mitigate these adverse effects.

References

  1. Public Health Nutr. 2010 Oct;13(10):1488-97 [PMID: 19968898]
  2. Public Health Nutr. 2021 Apr;24(6):1210-1215 [PMID: 33357256]
  3. World Dev. 2021 Jan;137:105199 [PMID: 32982018]
  4. Nutr Metab Cardiovasc Dis. 2020 Aug 28;30(9):1423-1426 [PMID: 32600957]
  5. J Nutr. 2019 Feb 1;149(2):330-335 [PMID: 30597047]
  6. Nutrients. 2020 Jul 15;12(7): [PMID: 32679788]
  7. Food Policy. 2021 May;101:102066 [PMID: 36570062]
  8. J Adolesc Health. 2019 Jan;64(1):70-78 [PMID: 30580768]
  9. Lancet Glob Health. 2020 Nov;8(11):e1380-e1389 [PMID: 32857955]
  10. Int J Surg. 2020 Apr;76:71-76 [PMID: 32112977]
  11. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  12. Prev Med Rep. 2018 Jan 28;9:96-101 [PMID: 29527460]
  13. Curr Dev Nutr. 2018 Jul 20;2(9):nzy062 [PMID: 30191202]
  14. Nutrients. 2020 Sep 02;12(9): [PMID: 32887422]
  15. Nutrients. 2020 Aug 20;12(9): [PMID: 32825251]
  16. Rural Remote Health. 2021 Nov;21(4):6724 [PMID: 34753291]
  17. Food Secur. 2020;12(4):719-725 [PMID: 32837638]
  18. Am J Clin Nutr. 2020 Nov 11;112(5):1162-1169 [PMID: 32766740]
  19. Clin Nutr ESPEN. 2020 Dec;40:171-178 [PMID: 33183533]
  20. Res Publ Assoc Res Nerv Ment Dis. 1983;60:115-20 [PMID: 6823524]
  21. Foods. 2020 May 25;9(5): [PMID: 32466106]
  22. Nutrients. 2020 Dec 31;13(1): [PMID: 33396310]
  23. Public Health Nutr. 2021 Feb;24(3):412-421 [PMID: 33050968]

Grants

  1. D43 TW007393/FIC NIH HHS

Word Cloud

Created with Highcharts 10.0.0aPRMSFI95%CIfoodpandemicriskinsecurityprevalencestay-at-homeorderPerulesssocialsevereincreasedassociatedfactorscross-sectionalweb-basedsurveyusingFIESmodelPoissonPeoplelikelyexperienceincomeperiodwhoseprocessedSocialBACKGROUND:Stay-at-homeordersdistancingimplementedprimarytoolsreducespreadacuterespiratorysyndromecoronavirus2SARS-CoV-2Howeverapproachindirectlyleadunemployment2·3millionPeruviansLimaPerúaloneresultmayespeciallylow-incomefamiliesrelydailywagestudyestimatesmoderateidentifiesexplainoutcomeMETHODS:non-probabilisticsamplingconductedMay18June302020usedmediaadvertisementsFacebookreach18-59-year-oldslivingassessedFoodInsecurityExperienceScaleRaschmethodologyrequirementsconsideredselectedstepwiseforwardselectiongeneralizedlinearGLMloglinkfunctionemployedestimateadjustedratiosFINDINGS:analysisbased1846replies23·2%provedacceptableinstrumentreliability0·72infit0·8-1·3low255US$/monthpre-pandemic3·771·98-7·16significantlyreduced2·271·55-3·31savingsran21days1·861·43-2·42Likewiseheadshouseholds1·201·00-1·44probableSARS-CoV2casesrelatives1·291·05-1·58Additionallyperceivedlosingweight1·211·01-1·45increasesfoodsprices1·311·08-1·59eatingminimally1·821·48-2·24INTERPRETATION:criticaleconomicsituationprotectionpoliciesreinforcedpreventmitigateadverseeffectspredictorsdueCOVID-19Results

Similar Articles

Cited By (1)