A thermal activated and differential self-calibrated flexible epidermal biomicrofluidic device for wearable accurate blood glucose monitoring.
Zhihua Pu, Xingguo Zhang, Haixia Yu, Jiaan Tu, Hailong Chen, Yuncong Liu, Xiao Su, Ridong Wang, Lei Zhang, Dachao Li
Author Information
Zhihua Pu: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China. ORCID
Xingguo Zhang: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
Haixia Yu: Tianjin Key Laboratory of Biomedical Detecting Techniques and Instruments, Tianjin University, Tianjin, China.
Jiaan Tu: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
Hailong Chen: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
Yuncong Liu: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China. ORCID
Xiao Su: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China.
Ridong Wang: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China. ORCID
Lei Zhang: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China. ORCID
Dachao Li: State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin, China. dchli@tju.edu.cn. ORCID
中文译文
English
This paper reports a flexible electronics-based epidermal biomicrofluidics technique for clinical continuous blood glucose monitoring, overcoming the drawback of the present wearables, unreliable measurements. A thermal activation method is proposed to improve the efficiency of transdermal interstitial fluid (ISF) extraction, enabling extraction with a low current density to notably reduce skin irritation. An Na sensor and a correction model are proposed to eliminate the effect of individual differences, which leads to fluctuations in the amount of ISF extraction. An electrochemical sensor with a 3D nanostructured working electrode surface is designed to enable precise in situ glucose measurement. A differential structure is proposed to eliminate the effect of passive perspiration, which leads to inaccurate blood glucose prediction. Fabrications of the epidermal biomicrofluidic device including formation of flexible electrodes, nanomaterial modification, and enzyme immobilization are fully realized by inkjet printing to enable facile manufacturing with low cost, which benefits practical production.
Biosensors (Basel). 2018 Mar 26;8(2):
[PMID: 29587456 ]
Adv Mater. 2017 Mar;29(11):
[PMID: 28032923 ]
Nat Commun. 2018 Jun 25;9(1):2469
[PMID: 29941973 ]
Diabetes Technol Ther. 2000 Summer;2(2):209-10
[PMID: 11469260 ]
Diabetes. 2014 Aug;63(8):2668-75
[PMID: 24696447 ]
Adv Healthc Mater. 2015 Dec 9;4(17):2606-40
[PMID: 26439100 ]
Biosens Bioelectron. 2013 Jul 15;45:206-12
[PMID: 23500365 ]
Med Biol Eng. 1976 Mar;14(2):151-8
[PMID: 940370 ]
Nat Biotechnol. 2019 Apr;37(4):407-419
[PMID: 30804536 ]
Clin Chim Acta. 2018 Jan;476:1-8
[PMID: 29080692 ]
Sci Adv. 2019 Jan 18;5(1):eaav3294
[PMID: 30746477 ]
Diabetes Care. 2019 Jan;42(1):164-172
[PMID: 30455329 ]
Biosens Bioelectron. 2019 Oct 15;143:111622
[PMID: 31470172 ]
Anal Chem. 2015 Jan 6;87(1):394-8
[PMID: 25496376 ]
Sensors (Basel). 2018 May 04;18(5):
[PMID: 29734708 ]
J Diabetes Sci Technol. 2013 May 01;7(3):678-88
[PMID: 23759401 ]
Lab Chip. 2018 Dec 7;18(23):3570-3577
[PMID: 30376024 ]
ACS Nano. 2018 Feb 27;12(2):1128-1138
[PMID: 29402086 ]
Physiol Meas. 2004 Jun;25(3):R35-50
[PMID: 15253111 ]
J Diabetes Sci Technol. 2015 Jun 30;9(5):993-8
[PMID: 26134832 ]
J Control Release. 2003 Sep 4;91(3):327-43
[PMID: 12932711 ]
Diabetes Technol Ther. 2019 Mar;21(3):110-118
[PMID: 30785311 ]
ACS Nano. 2010 Mar 23;4(3):1299-304
[PMID: 20148574 ]
Adv Mater. 2018 Mar;30(10):
[PMID: 29319214 ]
Science. 2011 Aug 12;333(6044):838-43
[PMID: 21836009 ]
Nat Commun. 2019 Dec 4;10(1):5513
[PMID: 31797921 ]
Diabetes Technol Ther. 2019 Jun;21(6):313-321
[PMID: 31059282 ]
Diabetes Care. 2005 Oct;28(10):2412-7
[PMID: 16186272 ]
Biophys J. 2006 Apr 15;90(8):2822-30
[PMID: 16443654 ]
Sensors (Basel). 2014 Apr 22;14(4):7084-95
[PMID: 24759111 ]
J Control Release. 2006 Jan 10;110(2):307-313
[PMID: 16313994 ]
Sci Adv. 2017 Dec 20;3(12):e1701629
[PMID: 29279864 ]
J Diabetes Sci Technol. 2010 Sep 01;4(5):1087-98
[PMID: 20920428 ]
Clin Chem. 2004 Aug;50(8):1383-90
[PMID: 15155544 ]
Diabetes Technol Ther. 2019 Jun;21(6):364-369
[PMID: 31045433 ]
Diabetes Technol Ther. 2016 Aug;18(8):505-11
[PMID: 27253751 ]
Nature. 2016 Jan 28;529(7587):509-514
[PMID: 26819044 ]
Nat Rev Endocrinol. 2018 Aug;14(8):464-475
[PMID: 29946127 ]
Clin Dermatol. 2012 May-Jun;30(3):257-62
[PMID: 22507037 ]
Lung. 2017 Apr;195(2):241-246
[PMID: 28243741 ]
Recent Pat Drug Deliv Formul. 2008;2(1):41-50
[PMID: 19075896 ]
Biomicrofluidics. 2016 Feb 23;10(1):011910
[PMID: 26958097 ]