Sol-Gel Processing of Water-Soluble Carbon Nitride Enables High-Performance Photoanodes*.

Christiane Adler, Igor Krivtsov, Dariusz Mitoraj, Lucía Dos Santos-Gómez, Santiago García-Granda, Christof Neumann, Julian Kund, Christine Kranz, Boris Mizaikoff, Andrey Turchanin, Radim Beranek
Author Information
  1. Christiane Adler: Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany. ORCID
  2. Igor Krivtsov: Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany. ORCID
  3. Dariusz Mitoraj: Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany. ORCID
  4. Lucía Dos Santos-Gómez: Department of Physical and Analytical Chemistry, University of Oviedo-CINN, 33006, Oviedo, Spain. ORCID
  5. Santiago García-Granda: Department of Physical and Analytical Chemistry, University of Oviedo-CINN, 33006, Oviedo, Spain. ORCID
  6. Christof Neumann: Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany. ORCID
  7. Julian Kund: Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
  8. Christine Kranz: Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany. ORCID
  9. Boris Mizaikoff: Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany. ORCID
  10. Andrey Turchanin: Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Lessingstr. 10, 07743, Jena, Germany. ORCID
  11. Radim Beranek: Institute of Electrochemistry, Ulm University, Albert-Einstein-Allee 47, 89081, Ulm, Germany. ORCID

Abstract

In spite of the enormous promise that polymeric carbon nitride (PCN) materials hold for various applications, the fabrication of high-quality, binder-free PCN films and electrodes has been a largely elusive goal to date. Here, we tackle this challenge by devising, for the first time, a water-based sol-gel approach that enables facile preparation of thin films based on poly(heptazine imide) (PHI), a polymer belonging to the PCN family. The sol-gel process capitalizes on the use of a water-soluble PHI precursor that allows formation of a non-covalent hydrogel. The hydrogel can be deposited on conductive substrates, resulting in formation of mechanically stable polymeric thin layers. The resulting photoanodes exhibit unprecedented photoelectrochemical (PEC) performance in alcohol reforming and highly selective (∼100 %) conversions with very high photocurrents (>0.25 mA cm under 2 sun) down to <0 V vs. RHE. This enables even effective PEC operation under zero-bias conditions and represents the very first example of a 'soft matter'-based PEC system capable of bias-free photoreforming. The robust binder-free films derived from sol-gel processing of water-soluble PCN thus constitute a new paradigm for high-performance 'soft matter' photoelectrocatalytic systems and pave the way for further applications in which high-quality PCN films are required.

Keywords

References

  1. Analyst. 2019 Feb 25;144(5):1475-1491 [PMID: 30714582]
  2. Nat Commun. 2019 Apr 16;10(1):1779 [PMID: 30992441]
  3. J Am Chem Soc. 2018 Sep 19;140(37):11604-11607 [PMID: 30153420]
  4. Nat Commun. 2020 Sep 17;11(1):4701 [PMID: 32943629]
  5. Environ Sci Technol. 2017 Nov 21;51(22):13380-13387 [PMID: 29064241]
  6. Angew Chem Weinheim Bergstr Ger. 2014 Oct 20;126(43):11722-11726 [PMID: 26300567]
  7. Chem Soc Rev. 2014 Nov 21;43(22):7581-93 [PMID: 24599050]
  8. Chemphyschem. 2012 Aug 27;13(12):2824-75 [PMID: 22753152]
  9. J Am Chem Soc. 2019 Jul 17;141(28):11219-11229 [PMID: 31265274]
  10. Chem Asian J. 2010 Jun 1;5(6):1307-11 [PMID: 20340158]
  11. ChemSusChem. 2015 Apr 24;8(8):1350-8 [PMID: 25693743]
  12. Angew Chem Int Ed Engl. 2014 Apr 1;53(14):3654-8 [PMID: 24574144]
  13. J Am Chem Soc. 2009 Jan 14;131(1):50-1 [PMID: 19072044]
  14. Angew Chem Int Ed Engl. 2018 Jul 20;57(30):9372-9376 [PMID: 29852539]
  15. Phys Chem Chem Phys. 2011 Dec 28;13(48):21511-9 [PMID: 22057224]
  16. Chem Sci. 2018 Mar 14;9(14):3584-3591 [PMID: 29780491]
  17. J Am Chem Soc. 2016 Jul 27;138(29):9183-92 [PMID: 27337491]
  18. Angew Chem Int Ed Engl. 2019 Mar 18;58(12):3656-3657 [PMID: 30701635]
  19. J Am Chem Soc. 2019 Sep 25;141(38):15201-15210 [PMID: 31462034]
  20. J Am Chem Soc. 2014 Oct 1;136(39):13486-9 [PMID: 25229396]
  21. Angew Chem Int Ed Engl. 2014 Oct 20;53(43):11538-42 [PMID: 25205168]
  22. Chem Sci. 2015 Oct 1;6(10):5690-5694 [PMID: 28757952]
  23. Chemistry. 2017 Jun 16;23(34):8142-8147 [PMID: 28485855]
  24. ChemSusChem. 2021 May 20;14(10):2170-2179 [PMID: 33576576]
  25. Angew Chem Int Ed Engl. 2015 May 18;54(21):6297-301 [PMID: 25833791]
  26. Chem Commun (Camb). 2019 Dec 4;55(93):14007-14010 [PMID: 31690891]
  27. Angew Chem Int Ed Engl. 2020 Jan 2;59(1):487-495 [PMID: 31659848]
  28. Nat Commun. 2020 Mar 13;11(1):1387 [PMID: 32170119]
  29. Angew Chem Int Ed Engl. 2017 Jan 9;56(2):510-514 [PMID: 27930846]
  30. ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8176-8182 [PMID: 31962048]
  31. Chem Asian J. 2017 Jul 4;12(13):1517-1522 [PMID: 28199049]
  32. Adv Mater. 2018 Mar;30(9): [PMID: 29318675]
  33. Angew Chem Int Ed Engl. 2017 Aug 28;56(36):10905-10910 [PMID: 28710859]
  34. ACS Appl Mater Interfaces. 2016 Aug 31;8(34):22287-94 [PMID: 27500462]
  35. Angew Chem Int Ed Engl. 2019 Nov 18;58(47):16724-16729 [PMID: 31502746]
  36. Nano Lett. 2020 Jun 10;20(6):4618-4624 [PMID: 32407122]
  37. Science. 2019 Jul 26;365(6451):360-366 [PMID: 31346061]
  38. J Am Chem Soc. 2009 Feb 11;131(5):1680-1 [PMID: 19191697]
  39. J Am Chem Soc. 2015 Feb 18;137(6):2179-82 [PMID: 25634547]
  40. Angew Chem Int Ed Engl. 2018 Jan 26;57(5):1186-1192 [PMID: 29178335]
  41. Nat Commun. 2019 Feb 26;10(1):945 [PMID: 30808862]
  42. Angew Chem Int Ed Engl. 2019 Aug 26;58(35):12180-12184 [PMID: 31273886]
  43. Angew Chem Int Ed Engl. 2018 Dec 3;57(49):15936-15947 [PMID: 30066478]
  44. Chem Sci. 2018 Oct 2;9(41):7912-7915 [PMID: 30542549]
  45. ACS Appl Mater Interfaces. 2016 May 25;8(20):13058-63 [PMID: 27148889]
  46. Angew Chem Int Ed Engl. 2017 Oct 16;56(43):13445-13449 [PMID: 28845919]
  47. Chemistry. 2011 Mar 7;17(11):3213-21 [PMID: 21312298]
  48. Angew Chem Int Ed Engl. 2020 Oct 5;59(41):18184-18188 [PMID: 33448554]
  49. J Phys Chem Lett. 2015 Mar 19;6(6):958-63 [PMID: 26262852]
  50. Nat Commun. 2016 Jul 08;7:12165 [PMID: 27387536]
  51. Nat Mater. 2009 Jan;8(1):76-80 [PMID: 18997776]
  52. Adv Mater. 2020 Mar;32(10):e1908140 [PMID: 31995254]
  53. Angew Chem Int Ed Engl. 2017 Jul 3;56(28):8221-8225 [PMID: 28520233]
  54. Angew Chem Int Ed Engl. 2019 May 6;58(19):6138-6151 [PMID: 30020555]
  55. Chemistry. 2020 May 20;26(29):6622-6628 [PMID: 32011751]
  56. Angew Chem Int Ed Engl. 2016 Feb 18;55(8):2773-7 [PMID: 26797811]
  57. Adv Mater. 2015 Jan 27;27(4):712-8 [PMID: 25492578]
  58. Angew Chem Int Ed Engl. 2018 Nov 26;57(48):15807-15811 [PMID: 30328234]

Grants

  1. MAT2016-78155-C2-1-R/Spanish MINECO
  2. GRUPIN-ID2018-170/Gobierno del Principado de Asturias

Word Cloud

Created with Highcharts 10.0.0PCNfilmssol-gelPECpolymericcarbonnitrideapplicationshigh-qualitybinder-freefirstenablesthinPHIwater-solubleformationhydrogelresultingoperation'softbias-freephotoreformingspiteenormouspromisematerialsholdvariousfabricationelectrodeslargelyelusivegoaldatetacklechallengedevisingtimewater-basedapproachfacilepreparationbasedpolyheptazineimidepolymerbelongingfamilyprocesscapitalizesuseprecursorallowsnon-covalentcandepositedconductivesubstratesmechanicallystablelayersphotoanodesexhibitunprecedentedphotoelectrochemicalperformancealcoholreforminghighlyselective∼100 %conversionshighphotocurrents>025 mA cm2 sun<0 VvsRHEeveneffectivezero-biasconditionsrepresentsexamplematter'-basedsystemcapablerobustderivedprocessingthusconstitutenewparadigmhigh-performancematter'photoelectrocatalyticsystemspavewayrequiredSol-GelProcessingWater-SolubleCarbonNitrideEnablesHigh-PerformancePhotoanodes*photoanodephotoelectrocatalysis

Similar Articles

Cited By