Pyochelin Biosynthetic Metabolites Bind Iron and Promote Growth in Demonstrating Siderophore-like Activity.

Anna R Kaplan, Djamaladdin G Musaev, William M Wuest
Author Information
  1. Anna R Kaplan: Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States.
  2. Djamaladdin G Musaev: Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States. ORCID
  3. William M Wuest: Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States. ORCID

Abstract

employ several strategies to sequester iron vital for their survival including the use of siderophores such as pyoverdine and pyochelin. Similar in structure but significantly less studied are pyochelin biosynthetic byproducts, dihydroaeruginoic acid, aeruginoic acid, aeruginaldehyde (IQS), and aeruginol, along with two other structurally related molecules, aerugine and pyonitrins A-D, which have all been isolated from numerous extracts. Because of the analogous substructure of these compounds to pyochelin, we hypothesized that they may play a role in iron homeostasis or have a biological effect on other bacterial species. Herein, we discuss the physiochemical evaluation of these molecules and disclose, for the first time, their ability to bind iron and promote growth in .

Keywords

References

  1. Appl Microbiol Biotechnol. 2010 May;86(6):1637-45 [PMID: 20352420]
  2. J Bacteriol. 1997 Jan;179(1):248-57 [PMID: 8982005]
  3. Appl Environ Microbiol. 2015 Aug 15;81(16):5290-8 [PMID: 26025901]
  4. Microbiol Mol Biol Rev. 2002 Jun;66(2):223-49 [PMID: 12040125]
  5. Org Lett. 2016 Apr 1;18(7):1658-61 [PMID: 26998643]
  6. J Clin Invest. 2017 Nov 1;127(11):4018-4030 [PMID: 28945201]
  7. Appl Environ Microbiol. 2003 Apr;69(4):2023-31 [PMID: 12676678]
  8. J Am Chem Soc. 2018 Feb 7;140(5):1774-1782 [PMID: 29300464]
  9. Curr Opin Struct Biol. 2018 Dec;53:1-11 [PMID: 29455106]
  10. Org Lett. 2011 Mar 4;13(5):844-7 [PMID: 21294578]
  11. Nat Chem Biol. 2013 May;9(5):339-43 [PMID: 23542643]
  12. Nat Prod Commun. 2014 Jun;9(6):789-94 [PMID: 25115080]
  13. J Am Chem Soc. 2019 Oct 30;141(43):17098-17101 [PMID: 31600443]
  14. Org Lett. 2018 Sep 21;20(18):5922-5926 [PMID: 30199265]
  15. J Clin Invest. 1990 Oct;86(4):1030-7 [PMID: 2170442]
  16. Appl Environ Microbiol. 1997 Jun;63(6):2147-54 [PMID: 9172332]
  17. J Nat Prod. 1993 Nov;56(11):1993-4 [PMID: 8289067]
  18. Microbiologyopen. 2020 Feb;9(2):e962 [PMID: 31667921]
  19. Nat Rev Microbiol. 2005 Apr;3(4):307-19 [PMID: 15759041]
  20. Microbiol Mol Biol Rev. 2007 Sep;71(3):413-51 [PMID: 17804665]
  21. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 [PMID: 9944570]
  22. Microbiol Res. 2018 Jul - Aug;212-213:103-111 [PMID: 29103733]
  23. J Am Chem Soc. 2016 May 11;138(18):5833-6 [PMID: 27096543]
  24. J Chem Phys. 2005 Apr 15;122(15):154104 [PMID: 15945622]
  25. J Bacteriol. 1996 Apr;178(8):2299-313 [PMID: 8636031]
  26. Org Lett. 2009 Mar 5;11(5):1051-4 [PMID: 19196161]
  27. Biometals. 2014 Jun;27(3):559-73 [PMID: 24682869]
  28. Annu Rev Phytopathol. 2011;49:291-315 [PMID: 19400639]
  29. Front Cell Infect Microbiol. 2013 Nov 14;3:75 [PMID: 24294593]
  30. J Chem Phys. 2010 Apr 21;132(15):154104 [PMID: 20423165]
  31. Chem Rev. 2016 May 11;116(9):5105-54 [PMID: 27077966]
  32. Microbiology (Reading). 1998 Nov;144 ( Pt 11):3135-3148 [PMID: 9846750]
  33. Chembiochem. 2008 Jun 16;9(9):1500-8 [PMID: 18465759]
  34. Curr Opin Chem Biol. 2009 Apr;13(2):205-15 [PMID: 19369113]
  35. Org Lett. 2020 Feb 21;22(4):1516-1519 [PMID: 32017580]
  36. Chem Biol. 2007 Jan;14(1):87-96 [PMID: 17254955]
  37. J Nat Prod. 2019 Apr 26;82(4):1024-1028 [PMID: 30793902]
  38. Z Naturforsch C J Biosci. 2006 Mar-Apr;61(3-4):263-6 [PMID: 16729587]
  39. Chem Biol. 2011 Oct 28;18(10):1320-30 [PMID: 22035801]
  40. J Mol Biol. 2006 Apr 14;357(5):1437-48 [PMID: 16499928]
  41. FEMS Microbiol Rev. 2003 Jun;27(2-3):215-37 [PMID: 12829269]
  42. Phys Rev A Gen Phys. 1988 Sep 15;38(6):3098-3100 [PMID: 9900728]
  43. J Nat Prod. 1994 Sep;57(9):1200-5 [PMID: 7798954]
  44. Angew Chem Int Ed Engl. 2019 Jan 2;58(1):200-204 [PMID: 30375753]
  45. J Bacteriol. 1979 Jan;137(1):357-64 [PMID: 104968]
  46. Cancer Chemother Pharmacol. 1988;21(3):233-6 [PMID: 3359557]
  47. J Am Chem Soc. 2009 Apr 15;131(14):5056-7 [PMID: 19320483]
  48. BMC Pulm Med. 2016 Dec 5;16(1):174 [PMID: 27919253]
  49. ACS Infect Dis. 2019 Jun 14;5(6):816-828 [PMID: 30969100]
  50. J Biol Inorg Chem. 2006 Jun;11(4):419-32 [PMID: 16550426]
  51. J Am Chem Soc. 2015 Jun 17;137(23):7314-7 [PMID: 26024439]
  52. J Bacteriol. 2009 Jun;191(11):3517-25 [PMID: 19329644]
  53. Phytochemistry. 2001 Dec;58(8):1297-303 [PMID: 11738425]

Grants

  1. R35 GM119426/NIGMS NIH HHS

MeSH Term

Iron
Phenols
Pseudomonas aeruginosa
Siderophores
Thiazoles

Chemicals

Phenols
Siderophores
Thiazoles
pyochelin
Iron

Word Cloud

Created with Highcharts 10.0.0ironpyochelinsiderophoresacidmoleculesemployseveralstrategiessequestervitalsurvivalincludingusepyoverdineSimilarstructuresignificantlylessstudiedbiosyntheticbyproductsdihydroaeruginoicaeruginoicaeruginaldehydeIQSaeruginolalongtwostructurallyrelatedaeruginepyonitrinsA-DisolatednumerousextractsanalogoussubstructurecompoundshypothesizedmayplayrolehomeostasisbiologicaleffectbacterialspeciesHereindiscussphysiochemicalevaluationdisclosefirsttimeabilitybindpromotegrowthPyochelinBiosyntheticMetabolitesBindIronPromoteGrowthDemonstratingSiderophore-likeActivityPseudomonasaeruginosaacquisition

Similar Articles

Cited By