High-Performance Triboelectric Devices via Dielectric Polarization: A Review.

Minsoo P Kim, Doo-Seung Um, Young-Eun Shin, Hyunhyub Ko
Author Information
  1. Minsoo P Kim: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
  2. Doo-Seung Um: Department of Electrical Engineering, Sejong University, Seoul, Republic of Korea.
  3. Young-Eun Shin: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.
  4. Hyunhyub Ko: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea. hyunhko@unist.ac.kr. ORCID

Abstract

Energy harvesting devices based on the triboelectric effect have attracted great attention because of their higher output performance compared to other nanogenerators, which have been utilized in various wearable applications. Based on the working mechanism, the triboelectric performance is mainly proportional to the surface charge density of the triboelectric materials. Various approaches, such as modification of the surface functional group and dielectric composition of the triboelectric materials, have been employed to enhance the surface charge density, leading to improvements in triboelectric performances. Notably, tuning the dielectric properties of triboelectric materials can significantly increase the surface charge density because the surface charge is proportional to the relative permittivity of the triboelectric material. The relative dielectric constant is modified by dielectric polarization, such as electronic, vibrational (or atomic), orientation (or dipolar), ionic, and interfacial polarization. Therefore, such polarization represents a critical factor toward improving the dielectric constant and consequent triboelectric performance. In this review, we summarize the recent insights on the improvement of triboelectric performance via enhanced dielectric polarization.

Keywords

References

  1. Small. 2016 Apr 6;12(13):1688-701 [PMID: 26865507]
  2. ACS Appl Mater Interfaces. 2016 Jan 13;8(1):736-44 [PMID: 26654103]
  3. Research (Wash D C). 2020 Mar 10;2020:8710686 [PMID: 32259107]
  4. ACS Nano. 2013 Nov 26;7(11):9533-57 [PMID: 24079963]
  5. Sci Rep. 2019 Feb 4;9(1):1370 [PMID: 30718775]
  6. Sci Rep. 2018 Sep 24;8(1):14287 [PMID: 30250283]
  7. Faraday Discuss. 2014;176:447-58 [PMID: 25406406]
  8. Chem Soc Rev. 2009 Sep;38(9):2520-31 [PMID: 19690733]
  9. ACS Appl Mater Interfaces. 2018 Jan 31;10(4):3652-3659 [PMID: 29313665]
  10. Sci Adv. 2017 May 26;3(5):e1602902 [PMID: 28560339]
  11. Sci Adv. 2017 May 31;3(5):e1700015 [PMID: 28580425]
  12. Nat Commun. 2019 Jun 19;10(1):2695 [PMID: 31217422]
  13. Chem Soc Rev. 2019 Feb 18;48(4):1194-1228 [PMID: 30663742]
  14. J Chem Inf Model. 2013 Apr 22;53(4):879-86 [PMID: 23521565]
  15. Sensors (Basel). 2020 May 21;20(10): [PMID: 32455713]
  16. Sci Rep. 2015 Mar 20;5:9309 [PMID: 25791299]
  17. ACS Nano. 2020 Jun 23;14(6):7101-7110 [PMID: 32501001]
  18. ACS Nano. 2017 Jun 27;11(6):6131-6138 [PMID: 28558185]
  19. Polymers (Basel). 2019 Feb 13;11(2): [PMID: 30960301]
  20. J Phys Chem Lett. 2014 Nov 6;5(21):3677-87 [PMID: 26278736]
  21. Nat Nanotechnol. 2018 Feb;13(2):112-116 [PMID: 29230042]
  22. Sci Rep. 2017 Feb 13;7:42274 [PMID: 28205559]
  23. Adv Mater. 2017 Oct;29(37): [PMID: 28744921]
  24. Nanoscale. 2015 Feb 7;7(5):1896-903 [PMID: 25526319]
  25. ACS Appl Mater Interfaces. 2018 Aug 1;10(30):25263-25272 [PMID: 29979024]
  26. Phys Chem Chem Phys. 2009 Apr 14;11(14):2452-8 [PMID: 19325978]
  27. Adv Sci (Weinh). 2020 Jun 02;7(14):2000186 [PMID: 32714748]
  28. Angew Chem Int Ed Engl. 2012 Nov 19;51(47):11700-21 [PMID: 23124936]
  29. ACS Appl Mater Interfaces. 2014 Jan 8;6(1):438-42 [PMID: 24251907]
  30. ACS Nano. 2015 Apr 28;9(4):3421-7 [PMID: 25790302]
  31. Sci Adv. 2019 Apr 05;5(4):eaav6437 [PMID: 30972365]

Grants

  1. 2018R1A2A1A05079100/National Research Foundation of Korea
  2. 2019R1I1A1A01060653/National Research Foundation of Korea
  3. 20010566/Ministry of Trade, Industry and Energy

Word Cloud

Created with Highcharts 10.0.0triboelectricdielectricsurfacepolarizationperformancechargedensitymaterialsEnergyharvestingproportionalrelativepermittivityconstantviaTriboelectricDielectricdevicesbasedeffectattractedgreatattentionhigheroutputcomparednanogeneratorsutilizedvariouswearableapplicationsBasedworkingmechanismmainlyVariousapproachesmodificationfunctionalgroupcompositionemployedenhanceleadingimprovementsperformancesNotablytuningpropertiescansignificantlyincreasematerialmodifiedelectronicvibrationalatomicorientationdipolarionicinterfacialThereforerepresentscriticalfactortowardimprovingconsequentreviewsummarizerecentinsightsimprovementenhancedHigh-PerformanceDevicesPolarization:ReviewRelativeSelf-poweredsensor

Similar Articles

Cited By (12)