Host-Dependent Clustering of Strains From Small Mammals in Finland.

Satu Olkkola, Mirko Rossi, Anniina Jaakkonen, Maria Simola, Jouni Tikkanen, Marjaana Hakkinen, Pirkko Tuominen, Otso Huitu, Jukka Niemimaa, Heikki Henttonen, Rauni Kivistö
Author Information
  1. Satu Olkkola: Finnish Food Authority, Helsinki, Finland.
  2. Mirko Rossi: Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
  3. Anniina Jaakkonen: Finnish Food Authority, Helsinki, Finland.
  4. Maria Simola: Finnish Food Authority, Helsinki, Finland.
  5. Jouni Tikkanen: Finnish Food Authority, Helsinki, Finland.
  6. Marjaana Hakkinen: Finnish Food Authority, Helsinki, Finland.
  7. Pirkko Tuominen: Finnish Food Authority, Helsinki, Finland.
  8. Otso Huitu: Natural Resources Institute Finland (Luke), Helsinki, Finland.
  9. Jukka Niemimaa: Natural Resources Institute Finland (Luke), Helsinki, Finland.
  10. Heikki Henttonen: Natural Resources Institute Finland (Luke), Helsinki, Finland.
  11. Rauni Kivistö: Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.

Abstract

Small mammals are known to carry spp.; however, little is known about the genotypes and their role in human infections. We studied intestinal content from small wild mammals collected in their natural habitats in Finland in 2010-2017, and in close proximity to 40 pig or cattle farms in 2017. The animals were trapped using traditional Finnish metal snap traps. spp. were isolated from the intestinal content using direct plating on mCCDA. A total of 19% of the captured wild animals ( = 577) and 41% of the pooled farm samples ( = 227) were positive for , which was the only species identified. The highest prevalence occurred in yellow-necked mice () and bank voles () which carried spp. in 66.3 and 63.9% of the farm samples and 41.5 and 24.4% of individual animals trapped from natural habitats, respectively. Interestingly, all house mouse () and shrew ( spp.) samples were negative for spp. isolates ( = 145) were further characterized by whole-genome sequencing. Core genome multilocus sequence typing (cgMLST) clustering showed that mouse and vole strains were separated from the rest of the population (636 and 671 allelic differences, 94 and 99% of core loci, respectively). Very little or no alleles were shared with genomes described earlier from livestock or human isolates. FastANI results further indicated that strains from voles are likely to represent a new previously undescribed species or subspecies of . Core-genome phylogeny showed that there was no difference between isolates originating from the farm and wild captured animals. Instead, the phylogeny followed the host species-association. There was some evidence (one strain each) of livestock-associated occurring in a farm-caught and a brown rat (), indicating that although small mammals may not be the original reservoir of colonizing livestock, they may sporadically carry strains occurring mainly in livestock and be associated with disease in humans.

Keywords

References

  1. Bioinformatics. 2015 Nov 15;31(22):3691-3 [PMID: 26198102]
  2. Epidemiol Infect. 1993 Oct;111(2):245-55 [PMID: 8405152]
  3. Prev Vet Med. 2014 May 1;114(2):106-13 [PMID: 24529344]
  4. Biomed Res Int. 2013;2013:340605 [PMID: 23865047]
  5. BMC Bioinformatics. 2012 May 08;13:87 [PMID: 22568821]
  6. Appl Environ Microbiol. 2010 Nov;76(21):7318-21 [PMID: 20851991]
  7. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  8. Antimicrob Agents Chemother. 2002 Aug;46(8):2644-7 [PMID: 12121947]
  9. Antimicrob Agents Chemother. 1991 May;35(5):813-8 [PMID: 1854162]
  10. Prev Vet Med. 2013 Aug 1;111(1-2):100-11 [PMID: 23706344]
  11. Int J Food Microbiol. 1996 Sep;32(1-2):35-47 [PMID: 8880326]
  12. Vet Res. 2001 May-Aug;32(3-4):311-21 [PMID: 11432422]
  13. BMC Bioinformatics. 2010 Dec 10;11:595 [PMID: 21143983]
  14. Antimicrob Agents Chemother. 2009 Aug;53(8):3357-64 [PMID: 19506058]
  15. Nature. 1976 Oct 7;263(5577):496 [PMID: 787803]
  16. Nat Commun. 2018 Nov 30;9(1):5114 [PMID: 30504855]
  17. Zoonoses Public Health. 2015 May;62(3):209-21 [PMID: 24948379]
  18. PLoS One. 2019 Oct 11;14(10):e0223804 [PMID: 31603950]
  19. Euro Surveill. 2019 Oct;24(43): [PMID: 31662159]
  20. Antimicrob Agents Chemother. 1996 Aug;40(8):1924-5 [PMID: 8843305]
  21. J Clin Microbiol. 2017 May;55(5):1269-1275 [PMID: 28249998]
  22. Bioinformatics. 2018 Jan 15;34(2):292-293 [PMID: 29028899]
  23. Appl Environ Microbiol. 1983 Oct;46(4):855-9 [PMID: 6639033]
  24. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  25. Mol Ecol. 2013 Feb;22(4):1051-64 [PMID: 23279096]
  26. Appl Environ Microbiol. 2006 Jan;72(1):960-2 [PMID: 16391145]
  27. J Antimicrob Chemother. 2012 Nov;67(11):2640-4 [PMID: 22782487]
  28. Appl Environ Microbiol. 2015 Oct 30;82(2):459-66 [PMID: 26519386]
  29. J Wildl Dis. 2013 Jul;49(3):747-9 [PMID: 23778637]
  30. Emerg Infect Dis. 2020 Mar;26(3):523-532 [PMID: 32091364]
  31. N Z Vet J. 2004 Dec;52(6):378-83 [PMID: 15768139]
  32. Nucleic Acids Res. 2019 Jul 2;47(W1):W256-W259 [PMID: 30931475]
  33. BMC Bioinformatics. 2009 May 18;10:152 [PMID: 19450271]
  34. Front Microbiol. 2020 Jan 14;10:3066 [PMID: 31993041]
  35. Microb Genom. 2018 Mar;4(3): [PMID: 29543149]
  36. J Antimicrob Chemother. 2003 Jan;51(1):19-26 [PMID: 12493783]
  37. PLoS One. 2014 Aug 29;9(8):e104905 [PMID: 25171228]
  38. J Food Prot. 1987 Apr;50(4):321-326 [PMID: 30965421]
  39. Br Poult Sci. 2014;55(4):452-9 [PMID: 25010255]
  40. Int J Environ Health Res. 1991 Mar;1(1):54-62 [PMID: 26927846]
  41. EFSA J. 2019 Dec 11;17(12):e05926 [PMID: 32626211]
  42. J Comput Biol. 2012 May;19(5):455-77 [PMID: 22506599]
  43. Glob Chang Biol. 2013 Mar;19(3):697-710 [PMID: 23504828]
  44. Mol Biol Evol. 2018 Feb 1;35(2):518-522 [PMID: 29077904]
  45. Mol Biol Evol. 2015 Jan;32(1):268-74 [PMID: 25371430]
  46. Appl Environ Microbiol. 2019 Feb 6;85(4): [PMID: 30552190]
  47. Epidemiol Infect. 2013 Sep;141(9):1885-91 [PMID: 23174339]
  48. Lett Appl Microbiol. 1999 Dec;29(6):406-10 [PMID: 10664985]
  49. Sci Rep. 2016 Aug 17;6:31736 [PMID: 27530432]
  50. Microbes Infect. 2006 Jun;8(7):1967-71 [PMID: 16713726]
  51. PLoS Comput Biol. 2015 Feb 12;11(2):e1004041 [PMID: 25675341]
  52. PLoS One. 2014 Nov 19;9(11):e112963 [PMID: 25409509]
  53. BMC Genomics. 2014 Feb 13;15:129 [PMID: 24524824]
  54. Nat Methods. 2017 Jun;14(6):587-589 [PMID: 28481363]
  55. Bioinformatics. 2014 Jul 15;30(14):2068-9 [PMID: 24642063]
  56. Mol Biol Evol. 2009 Jul;26(7):1641-50 [PMID: 19377059]

Grants

  1. /Wellcome Trust

Word Cloud

Created with Highcharts 10.0.0sppanimalsmammalswild=farmsamplesmouseisolatesstrainslivestockphylogenySmallknowncarrylittlehumanintestinalcontentsmallnaturalhabitatsFinlandtrappedusingcapturedspeciesvolesrespectivelyshrewshowedvoleoccurringmayhowevergenotypesroleinfectionsstudiedcollected2010-2017closeproximity40pigcattlefarms2017traditionalFinnishmetalsnaptrapsisolateddirectplatingmCCDAtotal19%57741%pooled227positiveidentifiedhighestprevalenceoccurredyellow-neckedmicebankcarried663639%415244%individualInterestinglyhousenegative145characterizedwhole-genomesequencingCoregenomemultilocussequencetypingcgMLSTclusteringseparatedrestpopulation636671allelicdifferences9499%corelociallelessharedgenomesdescribedearlierFastANIresultsindicatedlikelyrepresentnewpreviouslyundescribedsubspeciesCore-genomedifferenceoriginatingInsteadfollowedhostspecies-associationevidenceonestrainlivestock-associatedfarm-caughtbrownratindicatingalthoughoriginalreservoircolonizingsporadicallymainlyassociateddiseasehumansHost-DependentClusteringStrainsMammalsCampylobacterjejunicomparativegenomicsrodent

Similar Articles

Cited By