Modeling solvation effects on absorption and fluorescence spectra of indole in aqueous solution.

Salsabil Abou-Hatab, Vincenzo Carnevale, Spiridoula Matsika
Author Information
  1. Salsabil Abou-Hatab: Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA.
  2. Vincenzo Carnevale: Institute for Computational Molecular Science, Temple University, Philadelphia, Pennsylvania 19122, USA. ORCID
  3. Spiridoula Matsika: Department of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, USA. ORCID

Abstract

Modeling the optical spectra of molecules in solution presents a challenge, so it is important to understand which of the solvation effects (i.e., electrostatics, mutual polarization, and hydrogen bonding interactions between solute and solvent molecules) are crucial in reproducing the various features of the absorption and fluorescence spectra and to identify a sufficient theoretical model that accurately captures these effects with minimal computational cost. In this study, we use various implicit and explicit solvation models, such as molecular dynamics coupled with non-polarizable and polarizable force fields, as well as Car-Parrinello molecular dynamics, to model the absorption and fluorescence spectra of indole in aqueous solution. The excited states are computed using the equation of motion coupled cluster with single and double excitations combined with the effective fragment potential to represent water molecules, which we found to be a computationally efficient approach for modeling large solute-solvent clusters at a high level of quantum theory. We find that modeling mutual polarization, compared to other solvation effects, is a dominating factor for accurately reproducing the position of the peaks and spectral line shape of the absorption spectrum of indole in solution. We present an in-depth analysis of the influence that different solvation models have on the electronic excited states responsible for the features of the absorption spectra. Modeling fluorescence is more challenging since it is hard to reproduce even the correct emitting state, and force field parameters need to be re-evaluated.

References

  1. J Chem Phys. 2007 Oct 28;127(16):164319 [PMID: 17979350]
  2. Phys Chem Chem Phys. 2018 Mar 28;20(13):8554-8563 [PMID: 29542743]
  3. J Chem Theory Comput. 2018 Oct 9;14(10):5273-5289 [PMID: 30176213]
  4. Chemphyschem. 2012 Jan 16;13(1):28-51 [PMID: 21922624]
  5. J Chem Phys. 2014 Jul 28;141(4):044314 [PMID: 25084917]
  6. J Phys Chem A. 2007 Nov 22;111(46):11725-35 [PMID: 17941621]
  7. Chem Rev. 2016 Mar 23;116(6):3540-93 [PMID: 26928320]
  8. J Chem Theory Comput. 2016 Apr 12;12(4):1674-83 [PMID: 26959751]
  9. J Chem Theory Comput. 2012 Nov 13;8(11):4494-502 [PMID: 26605609]
  10. Annu Rev Phys Chem. 2007;58:585-612 [PMID: 17291183]
  11. J Chem Phys. 2011 Aug 21;135(7):074113 [PMID: 21861562]
  12. J Chem Theory Comput. 2014 Dec 9;10(12):5505-12 [PMID: 26583233]
  13. Phys Chem Chem Phys. 2006 Feb 14;8(6):663-87 [PMID: 16482307]
  14. J Chem Theory Comput. 2018 Apr 10;14(4):2117-2126 [PMID: 29509419]
  15. Phys Chem Chem Phys. 2016 Oct 19;18(41):28919-28931 [PMID: 27725986]
  16. Chemphyschem. 2016 Sep 5;17(17):2736-43 [PMID: 27247250]
  17. J Phys Condens Matter. 2009 Aug 19;21(33):333102 [PMID: 21828594]
  18. J Chem Phys. 1966 Nov 1;45(9):3455-6 [PMID: 5957016]
  19. J Chem Theory Comput. 2009 Mar 10;5(3):540-54 [PMID: 26610221]
  20. J Chem Theory Comput. 2016 Aug 9;12(8):3654-61 [PMID: 27340904]
  21. Phys Chem Chem Phys. 2011 Sep 7;13(33):15022-30 [PMID: 21761037]
  22. Chem Rev. 2000 Nov 8;100(11):4187-4226 [PMID: 11749344]
  23. Annu Rev Plant Biol. 2008;59:443-65 [PMID: 18444904]
  24. Biochemistry. 1970 Dec 8;9(25):4914-21 [PMID: 5480156]
  25. Photochem Photobiol. 2013 Jan-Feb;89(1):40-50 [PMID: 22882557]
  26. J Comput Chem. 2002 Dec;23(16):1497-506 [PMID: 12395419]
  27. Chemphyschem. 2015 Jun 8;16(8):1695-702 [PMID: 25802126]
  28. FEMS Microbiol Rev. 2010 Jul;34(4):426-44 [PMID: 20070374]
  29. J Chem Theory Comput. 2013 Oct 8;9(10):4507-4516 [PMID: 26504457]
  30. Phys Chem Chem Phys. 2015 May 21;17(19):12515-20 [PMID: 25899470]
  31. J Chem Theory Comput. 2012 Dec 11;8(12):5081-91 [PMID: 26593199]
  32. Annu Rev Phys Chem. 2013;64:553-78 [PMID: 23561011]
  33. J Chem Theory Comput. 2012 Feb 14;8(2):575-84 [PMID: 26596606]
  34. J Phys Chem A. 2015 Nov 5;119(44):10816-27 [PMID: 26444383]
  35. J Phys Chem A. 2018 Jan 11;122(1):390-397 [PMID: 29236493]
  36. J Phys Chem B. 2010 Mar 4;114(8):2549-64 [PMID: 20136072]
  37. Annu Rev Phys Chem. 2018 Apr 20;69:473-497 [PMID: 29490201]
  38. Top Curr Chem. 2015;355:329-57 [PMID: 24647839]
  39. J Phys Chem B. 2019 Aug 29;123(34):7424-7435 [PMID: 31373821]
  40. J Chem Phys. 2017 Jun 14;146(22):224105 [PMID: 29166050]
  41. Phys Chem Chem Phys. 2016 Jul 27;18(30):20234-50 [PMID: 27416749]
  42. J Chem Phys. 2008 Apr 7;128(13):134110 [PMID: 18397056]
  43. Chem Phys Lett. 2017 Oct 1;685:133-138 [PMID: 29225366]
  44. J Comput Chem. 2020 Apr 15;41(10):1034-1044 [PMID: 31976572]
  45. Chemphyschem. 2010 Apr 6;11(5):1018-28 [PMID: 20235111]
  46. Phys Chem Chem Phys. 2019 Jul 17;21(28):15504-15514 [PMID: 31259324]
  47. J Phys Chem A. 2017 Mar 2;121(8):1597-1606 [PMID: 28140598]
  48. Phys Chem Chem Phys. 2020 Mar 14;22(10):5929-5941 [PMID: 32115599]
  49. J Chem Phys. 2014 Apr 28;140(16):164104 [PMID: 24784250]
  50. J Chem Theory Comput. 2019 Apr 9;15(4):2233-2245 [PMID: 30875213]
  51. Phys Chem Chem Phys. 2006 Jul 21;8(27):3172-91 [PMID: 16902710]
  52. Chem Rev. 2012 Jan 11;112(1):632-72 [PMID: 21866983]
  53. Tetrahedron. 2014 Sep 16;70(37):6363-6372 [PMID: 25267859]
  54. J Phys Condens Matter. 2009 Feb 25;21(8):084204 [PMID: 21817356]
  55. J Chem Phys. 2005 May 1;122(17):174301 [PMID: 15910026]
  56. J Phys Condens Matter. 2009 Sep 30;21(39):395502 [PMID: 21832390]
  57. Chem Soc Rev. 2020 Aug 3;: [PMID: 32744278]
  58. J Chem Phys. 2007 Jan 7;126(1):014101 [PMID: 17212484]
  59. Chem Rev. 2005 Aug;105(8):2999-3093 [PMID: 16092826]
  60. Phys Chem Chem Phys. 2011 Feb 14;13(6):2160-6 [PMID: 21127788]
  61. Faraday Discuss. 2018 Dec 13;212(0):359-381 [PMID: 30311611]
  62. Spectrochim Acta A Mol Biomol Spectrosc. 2007 Jan;66(1):171-6 [PMID: 16829174]

Grants

  1. R01 GM131048/NIGMS NIH HHS

Word Cloud

Created with Highcharts 10.0.0spectrasolvationabsorptionsolutioneffectsfluorescenceModelingmoleculesindolemutualpolarizationreproducingvariousfeaturesmodelaccuratelymodelsmoleculardynamicscoupledforceaqueousexcitedstatesmodelingopticalpresentschallengeimportantunderstandieelectrostaticshydrogenbondinginteractionssolutesolventcrucialidentifysufficienttheoreticalcapturesminimalcomputationalcoststudyuseimplicitexplicitnon-polarizablepolarizablefieldswellCar-Parrinellocomputedusingequationmotionclustersingledoubleexcitationscombinedeffectivefragmentpotentialrepresentwaterfoundcomputationallyefficientapproachlargesolute-solventclustershighlevelquantumtheoryfindcompareddominatingfactorpositionpeaksspectrallineshapespectrumpresentin-depthanalysisinfluencedifferentelectronicresponsiblechallengingsincehardreproduceevencorrectemittingstatefieldparametersneedre-evaluated

Similar Articles

Cited By