Systematic literature review of machine learning methods used in the analysis of real-world data for patient-provider decision making.

Alan Brnabic, Lisa M Hess
Author Information
  1. Alan Brnabic: Eli Lilly and Company, Sydney, NSW, Australia.
  2. Lisa M Hess: Eli Lilly and Company, Indianapolis, IN, USA. hess_lisa_m@lilly.com. ORCID

Abstract

BACKGROUND: Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making.
METHODS: This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist.
RESULTS: A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies.
CONCLUSIONS: A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.

Keywords

References

  1. Int J Cardiovasc Imaging. 2016 Apr;32(4):687-96 [PMID: 26626458]
  2. PLoS One. 2020 Apr 16;15(4):e0231172 [PMID: 32298292]
  3. J Neuroradiol. 2017 Oct;44(6):381-387 [PMID: 28676345]
  4. Spine J. 2019 Nov;19(11):1764-1771 [PMID: 31185292]
  5. J Med Internet Res. 2016 Dec 16;18(12):e323 [PMID: 27986644]
  6. Int J Clin Pract. 2009 May;63(5):691-7 [PMID: 19392919]
  7. J Vasc Interv Radiol. 2019 Aug;30(8):1233-1241.e1 [PMID: 31208946]
  8. Annu Rev Public Health. 1995;16:61-81 [PMID: 7639884]
  9. Lancet. 2009 Feb 28;373(9665):739-45 [PMID: 19249635]
  10. Stat Med. 2018 Nov 30;37(27):3869-3886 [PMID: 30014497]
  11. Am J Ophthalmol. 2019 Dec;208:30-40 [PMID: 31323204]
  12. Anal Chim Acta. 2013 Nov 1;801:22-33 [PMID: 24139571]
  13. J Neurosurg Spine. 2017 Jun;26(6):736-743 [PMID: 28338449]
  14. Mol Inform. 2016 Jan;35(1):3-14 [PMID: 27491648]
  15. Comput Methods Programs Biomed. 2017 Dec;152:149-157 [PMID: 29054255]
  16. Pharmacoeconomics. 2019 Jun;37(6):745-752 [PMID: 30848452]
  17. Int J Med Inform. 2019 Jun;126:1-8 [PMID: 31029250]
  18. PLoS One. 2019 Nov 1;14(11):e0224582 [PMID: 31675367]
  19. Stat Med. 2016 Aug 30;35(19):3285-302 [PMID: 26892174]
  20. Eur J Endocrinol. 2010 Oct;163(4):565-71 [PMID: 20693184]
  21. Nat Rev Drug Discov. 2019 Jun;18(6):463-477 [PMID: 30976107]
  22. BMJ Open. 2016 Dec 1;6(12):e013336 [PMID: 27909038]
  23. BMC Med Inform Decis Mak. 2009 Jun 10;9:28 [PMID: 19515252]
  24. J Med Ethics. 2020 Mar;46(3):205-211 [PMID: 31748206]
  25. J Diabetes Sci Technol. 2015 Dec 20;10(1):6-18 [PMID: 26685993]
  26. Am J Public Health. 2020 May;110(5):e2 [PMID: 32267743]
  27. Brain. 2018 May 1;141(5):e38 [PMID: 29514218]
  28. PLoS One. 2018 Sep 4;13(9):e0202685 [PMID: 30180175]
  29. J Nucl Cardiol. 2018 Oct;25(5):1601-1609 [PMID: 28224450]
  30. PLoS One. 2019 May 15;14(5):e0213653 [PMID: 31091238]
  31. Int J Radiat Oncol Biol Phys. 2015 Dec 1;93(5):1127-35 [PMID: 26581149]
  32. Eur J Surg Oncol. 2019 Feb;45(2):134-140 [PMID: 30348602]
  33. Stroke. 1994 Jan;25(1):40-3 [PMID: 8266381]
  34. Ann Intern Med. 2001 Feb 20;134(4):330-4 [PMID: 11182844]
  35. J Diabetes Res. 2019 Jan 22;2019:4248218 [PMID: 30805372]
  36. Diabetes Obes Metab. 2018 Mar;20(3):681-688 [PMID: 29095564]
  37. Circ Heart Fail. 2018 Aug;11(8):e005193 [PMID: 30354561]
  38. Dialogues Clin Neurosci. 2011;13(2):217-24 [PMID: 21842619]
  39. JCO Clin Cancer Inform. 2018 Dec;2:1-11 [PMID: 30652575]
  40. Diabetes Technol Ther. 2010 Jan;12(1):81-8 [PMID: 20082589]
  41. Comput Methods Programs Biomed. 2016 Mar;125:58-65 [PMID: 26701199]
  42. J Am Heart Assoc. 2018 Jun 26;7(13): [PMID: 29945914]
  43. Med Care. 2019 Jan;57(1):63-72 [PMID: 30439793]
  44. BMC Med. 2018 Aug 27;16(1):150 [PMID: 30145981]
  45. Muscle Nerve. 2018 Dec;58(6):784-789 [PMID: 29981160]
  46. Gastrointest Endosc. 2014 Aug;80(2):260-8 [PMID: 24593947]
  47. J Palliat Med. 2012 Aug;15(8):863-9 [PMID: 22690950]
  48. Resuscitation. 2019 Jun;139:84-91 [PMID: 30978378]
  49. J Biopharm Stat. 2022 Mar;32(2):247-276 [PMID: 35213288]
  50. Cancer Med. 2017 Aug;6(8):1861-1870 [PMID: 28688161]
  51. BMC Med Res Methodol. 2016 Nov 22;16(1):160 [PMID: 27876006]
  52. J Neurosurg Sci. 2017 Dec;61(6):603-611 [PMID: 25384605]
  53. Medicine (Baltimore). 2019 Nov;98(46):e17510 [PMID: 31725605]

MeSH Term

Algorithms
Databases, Factual
Decision Making
Humans
Machine Learning
Research Design

Word Cloud

Created with Highcharts 10.0.0learningmethodsmachinestudiesdecisionmakingdatapatient-providerapproachesvalidationinformreviewstatisticalidentifiedusedmultiplealgorithmsMachinereal-worldliteratureconductedpublishedemployedstrategyevaluatedtwostudyqualityLuochecklisttreeforestappliedinternalexternalDecisionBACKGROUND:broadtermencompassingnumberallowinvestigatorlearnmaypermitlargedatabasesrapidlytranslatedapplicationsMETHODS:systematicidentifyobservationalresearchlevelsearchimplementedmeetingeligibilitycriteriaindependentreviewersRelevantrelateddesignstrengthslimitationsassessedusingmodifiedversionRESULTS:total34publicationsJanuary2014September2020diversepackagesacrosscommonincludedrandomutilizedonealgorithmeightSevenitemsfailedmet50%CONCLUSIONS:widevarietysoftwarestrategiesapplicationneedensuremodelselectionclearlydefinednecessarysuredecisionspatientcaremadehighestevidenceFutureworkroutinelyemployensembleincorporatingSystematicanalysisAutomatedneuralnetworkRandom

Similar Articles

Cited By