Characterizing RNA stability genome-wide through combined analysis of PRO-seq and RNA-seq data.

Amit Blumberg, Yixin Zhao, Yi-Fei Huang, Noah Dukler, Edward J Rice, Alexandra G Chivu, Katie Krumholz, Charles G Danko, Adam Siepel
Author Information
  1. Amit Blumberg: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  2. Yixin Zhao: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  3. Yi-Fei Huang: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  4. Noah Dukler: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  5. Edward J Rice: Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
  6. Alexandra G Chivu: Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
  7. Katie Krumholz: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
  8. Charles G Danko: Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
  9. Adam Siepel: Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. asiepel@cshl.edu. ORCID

Abstract

BACKGROUND: The concentrations of distinct types of RNA in cells result from a dynamic equilibrium between RNA synthesis and decay. Despite the critical importance of RNA decay rates, current approaches for measuring them are generally labor-intensive, limited in sensitivity, and/or disruptive to normal cellular processes. Here, we introduce a simple method for estimating relative RNA half-lives that is based on two standard and widely available high-throughput assays: Precision Run-On sequencing (PRO-seq) and RNA sequencing (RNA-seq).
RESULTS: Our method treats PRO-seq as a measure of transcription rate and RNA-seq as a measure of RNA concentration, and estimates the rate of RNA decay required for a steady-state equilibrium. We show that this approach can be used to assay relative RNA half-lives genome-wide, with good accuracy and sensitivity for both coding and noncoding transcription units. Using a structural equation model (SEM), we test several features of transcription units, nearby DNA sequences, and nearby epigenomic marks for associations with RNA stability after controlling for their effects on transcription. We find that RNA splicing-related features are positively correlated with RNA stability, whereas features related to miRNA binding and DNA methylation are negatively correlated with RNA stability. Furthermore, we find that a measure based on U1 binding and polyadenylation sites distinguishes between unstable noncoding and stable coding transcripts but is not predictive of relative stability within the mRNA or lincRNA classes. We also identify several histone modifications that are associated with RNA stability.
CONCLUSION: We introduce an approach for estimating the relative half-lives of individual RNAs. Together, our estimation method and systematic analysis shed light on the pervasive impacts of RNA stability on cellular RNA concentrations.

Keywords

References

  1. Cell. 2011 Dec 23;147(7):1473-83 [PMID: 22196725]
  2. Mol Syst Biol. 2011 Sep 13;7:529 [PMID: 21915116]
  3. Genome Res. 2003 Aug;13(8):1863-72 [PMID: 12902380]
  4. Genome Res. 2012 Oct;22(10):2031-42 [PMID: 22539649]
  5. Nature. 2015 May 21;521(7552):371-375 [PMID: 25970246]
  6. Cell. 2014 Dec 18;159(7):1698-710 [PMID: 25497548]
  7. Bioinformatics. 2005 Aug 15;21(16):3439-40 [PMID: 16082012]
  8. Genome Res. 2003 Oct;13(10):2260-4 [PMID: 12975314]
  9. Genome Res. 2012 May;22(5):947-56 [PMID: 22369889]
  10. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  11. Nat Genet. 2018 Nov;50(11):1553-1564 [PMID: 30349114]
  12. J Bacteriol. 1976 Feb;125(2):595-600 [PMID: 1107326]
  13. Sci Adv. 2017 Jul 12;3(7):e1700006 [PMID: 28706991]
  14. Thorac Cancer. 2015 Jan;6(1):2-9 [PMID: 26273328]
  15. Nucleic Acids Res. 2017 Nov 2;45(19):11088-11105 [PMID: 28977633]
  16. Nat Biotechnol. 2015 Jul;33(7):722-9 [PMID: 26098447]
  17. Nat Protoc. 2009;4(8):1184-91 [PMID: 19617889]
  18. Genome Res. 2003 Sep;13(9):1998-2004 [PMID: 12915492]
  19. Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6164-9 [PMID: 17405863]
  20. Bioinformatics. 2009 Jun 1;25(11):1422-3 [PMID: 19304878]
  21. Cell. 2013 May 23;153(5):1000-11 [PMID: 23706738]
  22. Nat Protoc. 2016 Aug;11(8):1455-76 [PMID: 27442863]
  23. Nat Methods. 2017 Dec;14(12):1198-1204 [PMID: 28945705]
  24. Theory Biosci. 2012 Dec;131(4):281-5 [PMID: 22872506]
  25. Hum Mol Genet. 2005 Feb 1;14(3):421-7 [PMID: 15590696]
  26. Nat Genet. 2014 Dec;46(12):1311-20 [PMID: 25383968]
  27. Mol Cell Biol. 2014 Nov 15;34(22):4078-87 [PMID: 25154419]
  28. Genome Res. 2012 May;22(5):885-98 [PMID: 22406755]
  29. Nat Commun. 2017 Oct 13;8(1):909 [PMID: 29030541]
  30. Science. 2010 Feb 19;327(5968):996-1000 [PMID: 20133523]
  31. Nucleic Acids Res. 2002 Dec 15;30(24):5529-38 [PMID: 12490721]
  32. Nat Biotechnol. 2019 Aug;37(8):907-915 [PMID: 31375807]
  33. Genome Res. 2014 Jun;24(6):896-905 [PMID: 24714810]
  34. Mol Cell Biol. 1983 Mar;3(3):457-65 [PMID: 6341818]
  35. Nat Struct Mol Biol. 2013 Aug;20(8):923-8 [PMID: 23851456]
  36. Nat Rev Mol Cell Biol. 2007 Feb;8(2):113-26 [PMID: 17245413]
  37. Nat Methods. 2015 May;12(5):433-8 [PMID: 25799441]
  38. Mol Cell. 2013 Apr 25;50(2):212-22 [PMID: 23523369]
  39. PLoS Genet. 2011 Sep;7(9):e1002273 [PMID: 21931566]
  40. Cell. 2017 Apr 6;169(2):326-337.e12 [PMID: 28388414]
  41. Methods. 2018 Mar 15;137:90-98 [PMID: 29247756]
  42. Bioinformatics. 2011 Jun 15;27(12):1653-9 [PMID: 21543442]
  43. Biochem Biophys Res Commun. 2008 Mar 14;367(3):542-5 [PMID: 18177737]
  44. Nucleic Acids Res. 2018 Jan 4;46(D1):D794-D801 [PMID: 29126249]
  45. Int J Mol Sci. 2017 Dec 15;18(12): [PMID: 29244760]
  46. J Biol Chem. 2007 Jul 13;282(28):20230-7 [PMID: 17478421]
  47. Nat Immunol. 2009 Mar;10(3):281-8 [PMID: 19198593]
  48. DNA Res. 2009 Feb;16(1):45-58 [PMID: 19001483]
  49. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  50. Genome Res. 2012 Sep;22(9):1616-25 [PMID: 22955974]
  51. Genome Res. 2017 Jan;27(1):27-37 [PMID: 27927715]
  52. Elife. 2019 Apr 23;8: [PMID: 31012849]
  53. BMC Genomics. 2015 Mar 06;16:154 [PMID: 25879614]
  54. Science. 2013 Feb 22;339(6122):950-3 [PMID: 23430654]
  55. Cell Rep. 2016 Jan 12;14(2):310-9 [PMID: 26748710]
  56. Genome Res. 2013 Dec;23(12):2078-90 [PMID: 24072873]
  57. Elife. 2019 Apr 26;8: [PMID: 31025937]
  58. Nat Methods. 2018 Mar;15(3):221-225 [PMID: 29355846]
  59. Science. 2016 Jun 3;352(6290):1225-8 [PMID: 27257258]
  60. RNA. 2008 Sep;14(9):1959-72 [PMID: 18658122]
  61. Nucleic Acids Res. 2019 Jan 8;47(D1):D766-D773 [PMID: 30357393]
  62. Nature. 2013 Jul 18;499(7458):360-3 [PMID: 23792564]
  63. Proc Natl Acad Sci U S A. 2005 Dec 6;102(49):17551-8 [PMID: 16251272]
  64. Sci Rep. 2018 Mar 19;8(1):4781 [PMID: 29556074]
  65. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):5860-5 [PMID: 11972065]
  66. Nat Struct Mol Biol. 2017 Jan;24(1):86-96 [PMID: 27870833]
  67. Genome Biol. 2001;2(10):RESEARCH0041 [PMID: 11597333]
  68. Methods Mol Biol. 2009;556:141-53 [PMID: 19488876]
  69. Elife. 2017 Oct 10;6: [PMID: 28994650]
  70. Bioinformatics. 2015 Apr 1;31(7):1127-9 [PMID: 25417204]
  71. Cell. 1979 Dec;18(4):1299-302 [PMID: 229971]
  72. Nat Genet. 2014 Dec;46(12):1253-4 [PMID: 25418744]
  73. Nature. 2011 May 19;473(7347):337-42 [PMID: 21593866]
  74. Nat Methods. 2017 Apr;14(4):417-419 [PMID: 28263959]
  75. Nature. 2011 Jan 20;469(7330):368-73 [PMID: 21248844]
  76. Mol Cell. 2020 May 7;78(3):434-444.e5 [PMID: 32294471]
  77. Nat Biotechnol. 2011 May;29(5):436-42 [PMID: 21516085]
  78. Elife. 2014 Apr 29;3:e02407 [PMID: 24843027]
  79. PLoS Biol. 2006 Jun;4(6):e180 [PMID: 16700628]
  80. Genes Dev. 2008 Aug 1;22(15):2022-7 [PMID: 18676807]
  81. Elife. 2015 Aug 12;4: [PMID: 26267216]

Grants

  1. R01 HG010346/NHGRI NIH HHS
  2. R35-GM127070/NIH HHS
  3. R01-HG009309/NIH HHS
  4. R35 GM127070/NIGMS NIH HHS
  5. R01 HG009309/NHGRI NIH HHS

MeSH Term

Genomic Instability
High-Throughput Nucleotide Sequencing
Humans
RNA Stability
RNA-Seq

Word Cloud

Created with Highcharts 10.0.0RNAstabilityrelativePRO-seqtranscriptiondecaymethodhalf-livesRNA-seqmeasurefeaturesconcentrationsequilibriumsensitivitycellularintroduceestimatingbasedsequencingrateapproachgenome-widecodingnoncodingunitsequationseveralnearbyDNAfindcorrelatedbindinganalysisBACKGROUND:distincttypescellsresultdynamicsynthesisDespitecriticalimportanceratescurrentapproachesmeasuringgenerallylabor-intensivelimitedand/ordisruptivenormalprocessessimpletwostandardwidelyavailablehigh-throughputassays:PrecisionRun-OnRESULTS:treatsconcentrationestimatesrequiredsteady-stateshowcanusedassaygoodaccuracyUsingstructuralmodelSEMtestsequencesepigenomicmarksassociationscontrollingeffectssplicing-relatedpositivelywhereasrelatedmiRNAmethylationnegativelyFurthermoreU1polyadenylationsitesdistinguishesunstablestabletranscriptspredictivewithinmRNAlincRNAclassesalsoidentifyhistonemodificationsassociatedCONCLUSION:individualRNAsTogetherestimationsystematicshedlightpervasiveimpactsCharacterizingcombineddataEpigenomicshalf-lifesplicingStructuralmodeling

Similar Articles

Cited By