A theoretical model of health management using data-driven decision-making: the future of precision medicine and health.

Eva Kriegova, Milos Kudelka, Martin Radvansky, Jiri Gallo
Author Information
  1. Eva Kriegova: Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc & University Hospital Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic.
  2. Milos Kudelka: Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2175/15, Poruba, 708 00, Ostrava, Czech Republic.
  3. Martin Radvansky: Department of Computer Science, Faculty of Electrical Engineering and Computer Science, VSB-Technical University of Ostrava, 17. listopadu 2175/15, Poruba, 708 00, Ostrava, Czech Republic.
  4. Jiri Gallo: Department of Orthopedics, Faculty of Medicine and Dentistry, Palacky University Olomouc, Hnevotinska 3, 775 15, Olomouc, Czech Republic. jiri.gallo@volny.cz. ORCID

Abstract

BACKGROUND: The burden of chronic and societal diseases is affected by many risk factors that can change over time. The minimalisation of disease-associated risk factors may contribute to long-term health. Therefore, new data-driven health management should be used in clinical decision-making in order to minimise future individual risks of disease and adverse health effects.
METHODS: We aimed to develop a health trajectories (HT) management methodology based on electronic health records (EHR) and analysing overlapping groups of patients who share a similar risk of developing a particular disease or experiencing specific adverse health effects. Formal concept analysis (FCA) was applied to identify and visualise overlapping patient groups, as well as for decision-making. To demonstrate its capabilities, the theoretical model presented uses genuine data from a local total knee arthroplasty (TKA) register (a total of 1885 patients) and shows the influence of step by step changes in five lifestyle factors (BMI, smoking, activity, sports and long-distance walking) on the risk of early reoperation after TKA.
RESULTS: The theoretical model of HT management demonstrates the potential of using EHR data to make data-driven recommendations to support both patients' and physicians' decision-making. The model example developed from the TKA register acts as a clinical decision-making tool, built to show surgeons and patients the likelihood of early reoperation after TKA and how the likelihood changes when factors are modified. The presented data-driven tool suits an individualised approach to health management because it quantifies the impact of various combinations of factors on the early reoperation rate after TKA and shows alternative combinations of factors that may change the reoperation risk.
CONCLUSION: This theoretical model introduces future HT management as an understandable way of conceiving patients' futures with a view to positively (or negatively) changing their behaviour. The model's ability to influence beneficial health care decision-making to improve patient outcomes should be proved using various real-world data from EHR datasets.

Keywords

References

  1. Am J Cardiol. 2021 Jan 1;138:20-25 [PMID: 33065086]
  2. Cancer Prev Res (Phila). 2018 May;11(5):255-264 [PMID: 29661853]
  3. J Arthroplasty. 2006 Jun;21(4):547-52 [PMID: 16781408]
  4. Lancet. 2020 Mar 7;395(10226):795-808 [PMID: 31492503]
  5. BMC Musculoskelet Disord. 2018 Oct 2;19(1):354 [PMID: 30285799]
  6. Lancet. 2019 Aug 24;394(10199):685-696 [PMID: 31448740]
  7. J Transl Med. 2020 Oct 19;18(1):394 [PMID: 33076938]
  8. Yearb Med Inform. 2016 Aug 02;Suppl 1:S103-16 [PMID: 27488402]
  9. Stud Health Technol Inform. 2019 Aug 21;264:1633-1634 [PMID: 31438266]
  10. Am J Respir Crit Care Med. 2014 Nov 15;190(10):P7-8 [PMID: 25398122]
  11. Diagnosis (Berl). 2017 Nov 27;4(4):211-223 [PMID: 29536944]
  12. J Intern Med. 2015 Oct;278(4):369-95 [PMID: 26212387]
  13. J Transl Med. 2019 Feb 12;17(1):44 [PMID: 30755218]
  14. J Epidemiol Community Health. 2016 Jan;70(1):49-55 [PMID: 26248550]
  15. NPJ Digit Med. 2020 Feb 6;3:17 [PMID: 32047862]
  16. Best Pract Res Clin Obstet Gynaecol. 2020 May;65:18-31 [PMID: 31862315]
  17. J Am Med Inform Assoc. 2019 Oct 1;26(10):977-988 [PMID: 31220274]
  18. JAMA Netw Open. 2020 Jan 3;3(1):e1920362 [PMID: 32003822]
  19. Int J Med Sci. 2014 Sep 06;11(11):1185-200 [PMID: 25249787]
  20. J Am Coll Cardiol. 2020 Jul 21;76(3):306-320 [PMID: 32674794]
  21. BMC Health Serv Res. 2019 Dec 4;19(1):934 [PMID: 31801518]
  22. Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11878-11887 [PMID: 31127050]
  23. Health Aff (Millwood). 2018 May;37(5):694-701 [PMID: 29733705]
  24. N Engl J Med. 2018 Oct 11;379(15):1452-1462 [PMID: 30304648]
  25. Front Immunol. 2020 Sep 10;11:2116 [PMID: 33013892]
  26. J Transl Med. 2020 Sep 29;18(1):369 [PMID: 32993675]
  27. J Biomed Semantics. 2018 Mar 19;9(1):11 [PMID: 29554977]
  28. Nat Hum Behav. 2018 Dec;2(12):955-966 [PMID: 30988441]
  29. Eur Respir J. 2019 Apr 25;53(4): [PMID: 31023866]
  30. Proc Natl Acad Sci U S A. 2020 Jan 7;117(1):52-59 [PMID: 31871152]
  31. J Arthroplasty. 2020 Jun;35(6):1545-1557 [PMID: 32067896]

MeSH Term

Arthroplasty, Replacement, Knee
Clinical Decision-Making
Humans
Models, Theoretical
Precision Medicine
Reoperation

Word Cloud

Created with Highcharts 10.0.0healthfactorsmanagementdecision-makingriskmodelTKAreoperationdata-driventheoreticalfutureHTEHRpatientsdataearlyusingtoolchangemayclinicaldiseaseadverseeffectsoverlappinggroupsFormalconceptanalysispatientpresentedtotalkneearthroplastyregistershowsinfluencestepchangespatients'likelihoodvariouscombinationsratemedicinePrecisionBACKGROUND:burdenchronicsocietaldiseasesaffectedmanycantimeminimalisationdisease-associatedcontributelong-termThereforenewusedorderminimiseindividualrisksMETHODS:aimeddeveloptrajectoriesmethodologybasedelectronicrecordsanalysingsharesimilardevelopingparticularexperiencingspecificFCAappliedidentifyvisualisewelldemonstratecapabilitiesusesgenuinelocal1885fivelifestyleBMIsmokingactivitysportslong-distancewalkingRESULTS:demonstratespotentialmakerecommendationssupportphysicians'exampledevelopedactsbuiltshowsurgeonsmodifiedsuitsindividualisedapproachquantifiesimpactalternativeCONCLUSION:introducesunderstandablewayconceivingfuturesviewpositivelynegativelychangingbehaviourmodel'sabilitybeneficialcareimproveoutcomesprovedreal-worlddatasetsdecision-making:precisionClinicalEarlyElectronicrecordHealthtrajectoryLifestyleRevisionTotal

Similar Articles

Cited By (5)