A mathematical model for zoonotic transmission of malaria in the Atlantic Forest: Exploring the effects of variations in vector abundance and acrodendrophily.

Antônio Ralph Medeiros-Sousa, Gabriel Zorello Laporta, Renato Mendes Coutinho, Luis Filipe Mucci, Mauro Toledo Marrelli
Author Information
  1. Antônio Ralph Medeiros-Sousa: Epidemiology Department, School of Public Health, University of São Paulo, São Paulo, Brazil. ORCID
  2. Gabriel Zorello Laporta: Graduate Research and Innovation Program, Centro Universitário Saúde ABC (FMABC), Santo André, Brazil. ORCID
  3. Renato Mendes Coutinho: Center for Mathematics, Computation and Cognition (CMCC), Federal University of ABC, Santo André, Brazil. ORCID
  4. Luis Filipe Mucci: Superintendency for the Control of Endemic Diseases, State Health Secretariat, São Paulo, Brazil. ORCID
  5. Mauro Toledo Marrelli: Epidemiology Department, School of Public Health, University of São Paulo, São Paulo, Brazil.

Abstract

Transmission foci of autochthonous malaria caused by Plasmodium vivax-like parasites have frequently been reported in the Atlantic Forest in Southeastern and Southern Brazil. Evidence suggests that malaria is a zoonosis in these areas as human infections by simian Plasmodium species have been detected, and the main vector of malaria in the Atlantic Forest, Anopheles (Kerteszia) cruzii, can blood feed on human and simian hosts. In view of the lack of models that seek to predict the dynamics of zoonotic transmission in this part of the Atlantic Forest, the present study proposes a new deterministic mathematical model that includes a transmission compartment for non-human primates and parameters that take into account vector displacement between the upper and lower forest strata. The effects of variations in the abundance and acrodendrophily of An. cruzii on the prevalence of infected humans in the study area and the basic reproduction number (R0) for malaria were analyzed. The model parameters are based on the literature and fitting of the empirical data. Simulations performed with the model indicate that (1) an increase in the abundance of the vector in relation to the total number of blood-seeking mosquitoes leads to an asymptotic increase in both the proportion of infected individuals at steady state and R0; (2) the proportion of infected humans at steady state is higher when displacement of the vector mosquito between the forest strata increases; and (3) in most scenarios, Plasmodium transmission cannot be sustained only between mosquitoes and humans, which implies that non-human primates play an important role in maintaining the transmission cycle. The proposed model contributes to a better understanding of the dynamics of malaria transmission in the Atlantic Forest.

References

  1. Malar J. 2017 Feb 10;16(1):71 [PMID: 28187764]
  2. Malar J. 2015 Feb 18;14:81 [PMID: 25889933]
  3. Proc Natl Acad Sci U S A. 2006 Feb 14;103(7):2452-7 [PMID: 16461902]
  4. Malar J. 2019 Apr 2;18(1):110 [PMID: 30940142]
  5. Sci Rep. 2018 May 4;8(1):7077 [PMID: 29728637]
  6. Am J Trop Med Hyg. 1973 Mar;22(2):157-8 [PMID: 4631763]
  7. Bull Math Biol. 2008 Jul;70(5):1272-96 [PMID: 18293044]
  8. Infect Genet Evol. 2020 Mar;78:104061 [PMID: 31683005]
  9. Parasit Vectors. 2008 Aug 19;1(1):26 [PMID: 18710577]
  10. Rev Inst Med Trop Sao Paulo. 1971 Sep-Oct;13(5):311-9 [PMID: 5162258]
  11. Math Biosci. 2002 Nov-Dec;180:29-48 [PMID: 12387915]
  12. Bull Entomol Res. 1946 Feb;36:473-96 [PMID: 21015624]
  13. Acta Trop. 2006 Nov;100(1-2):54-62 [PMID: 17126279]
  14. Rev Saude Publica. 2007 Apr;41(2):269-75 [PMID: 17384803]
  15. Rev Saude Publica. 1968 Dec;2(2):111-73 [PMID: 5709516]
  16. Acta Trop. 2013 Jan;125(1):102-6 [PMID: 22989665]
  17. Bull World Health Organ. 1966;35(5):805-8 [PMID: 5297817]
  18. Infect Genet Evol. 2011 Jan;11(1):209-21 [PMID: 20849978]
  19. Lancet. 2004 Mar 27;363(9414):1017-24 [PMID: 15051281]
  20. Emerg Infect Dis. 2008 May;14(5):811-3 [PMID: 18439369]
  21. J Med Primatol. 2011 Dec;40(6):392-400 [PMID: 21933192]
  22. Science. 1965 Aug 20;149(3686):865 [PMID: 14332847]
  23. J Math Biol. 1990;28(4):365-82 [PMID: 2117040]
  24. Emerg Infect Dis. 2011 Oct;17(10):1799-806 [PMID: 22000348]
  25. Mem Inst Oswaldo Cruz. 2014 Aug;109(5):618-33 [PMID: 25185003]
  26. J R Soc Interface. 2010 Jun 6;7(47):873-85 [PMID: 19892718]
  27. Parasit Vectors. 2013 Mar 07;6:58 [PMID: 23497493]
  28. Mem Inst Oswaldo Cruz. 2011 Aug;106 Suppl 1:239-45 [PMID: 21881779]
  29. Rev Inst Med Trop Sao Paulo. 2014 Sep-Oct;56(5):403-9 [PMID: 25229220]
  30. Malar J. 2007 Mar 19;6:33 [PMID: 17371598]
  31. Mol Biochem Parasitol. 1993 Jan;57(1):177-80 [PMID: 8426613]
  32. Parasit Vectors. 2018 Jan 15;11(1):36 [PMID: 29335015]
  33. EBioMedicine. 2015 Jul 29;2(9):1186-92 [PMID: 26501116]
  34. BMC Biol. 2021 Oct 1;19(1):219 [PMID: 34592986]
  35. Rev Saude Publica. 1996 Jun;30(3):218-23 [PMID: 9110466]
  36. Malar J. 2014 Feb 24;13:68 [PMID: 24564912]
  37. Emerg Infect Dis. 2008 May;14(5):814-6 [PMID: 18439370]
  38. Malar J. 2009 Oct 30;8:249 [PMID: 19878553]
  39. Lancet Planet Health. 2019 Apr;3(4):e179-e186 [PMID: 31029229]
  40. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15523-8 [PMID: 16227436]
  41. Parasit Vectors. 2014 Dec 16;7:581 [PMID: 25511160]
  42. Malar J. 2018 Mar 14;17(1):113 [PMID: 29540186]
  43. Am J Primatol. 2020 Apr;82(4):e23089 [PMID: 31912561]
  44. Mem Inst Oswaldo Cruz. 2018 Feb;113(2):111-118 [PMID: 29236924]
  45. Malar J. 2009 Apr 09;8:60 [PMID: 19358734]
  46. Pathogens. 2020 Jun 29;9(7): [PMID: 32610598]
  47. Lancet Glob Health. 2017 Oct;5(10):e1038-e1046 [PMID: 28867401]
  48. PLoS Negl Trop Dis. 2019 Dec 9;13(12):e0007906 [PMID: 31815937]
  49. Neotrop Entomol. 2009 Mar-Apr;38(2):272-80 [PMID: 19488519]
  50. Emerg Infect Dis. 2001 Jan-Feb;7(1):35-42 [PMID: 11266292]
  51. Emerg Infect Dis. 2016 Feb;22(2):201-8 [PMID: 26812373]
  52. Malar J. 2007 Sep 19;6:127 [PMID: 17880709]
  53. Parasit Vectors. 2014 Jun 09;7:265 [PMID: 24912923]
  54. Mem Inst Oswaldo Cruz. 1992;87 Suppl 3:1-20 [PMID: 1343676]
  55. PLoS Negl Trop Dis. 2013;7(3):e2139 [PMID: 23556023]
  56. J Med Primatol. 2006 Apr;35(2):87-96 [PMID: 16556295]
  57. Mem Inst Oswaldo Cruz. 2014 Aug;109(5):641-53 [PMID: 25099335]
  58. Mem Inst Oswaldo Cruz. 1984 Oct-Dec;79(4):461-3 [PMID: 6533421]

MeSH Term

Animals
Anopheles
Brazil
Ecosystem
Forests
Humans
Malaria
Models, Theoretical
Mosquito Vectors
Plasmodium
Primate Diseases
Primates

Word Cloud

Created with Highcharts 10.0.0malariatransmissionAtlanticvectormodelForestPlasmodiumabundanceinfectedhumanshumansimiancruziidynamicszoonoticstudymathematicalnon-humanprimatesparametersdisplacementforeststrataeffectsvariationsacrodendrophilynumberR0increasemosquitoesproportionsteadystateTransmissionfociautochthonouscausedvivax-likeparasitesfrequentlyreportedSoutheasternSouthernBrazilEvidencesuggestszoonosisareasinfectionsspeciesdetectedmainAnophelesKertesziacanbloodfeedhostsviewlackmodelsseekpredictpartpresentproposesnewdeterministicincludescompartmenttakeaccountupperlowerprevalenceareabasicreproductionanalyzedbasedliteraturefittingempiricaldataSimulationsperformedindicate1relationtotalblood-seekingleadsasymptoticindividuals2highermosquitoincreases3scenariossustainedimpliesplayimportantrolemaintainingcycleproposedcontributesbetterunderstandingForest:Exploring

Similar Articles

Cited By (5)