A method to adjust a prior distribution in Bayesian second-level fMRI analysis.

Hyemin Han
Author Information
  1. Hyemin Han: Educational Psychology Program, University of Alabama - Tuscaloosa, Tuscaloosa, AL, United States of America.

Abstract

Previous research has shown the potential value of Bayesian methods in fMRI (functional magnetic resonance imaging) analysis. For instance, the results from Bayes factor-applied second-level fMRI analysis showed a higher hit rate compared with frequentist second-level fMRI analysis, suggesting greater sensitivity. Although the method reported more positives as a result of the higher sensitivity, it was able to maintain a reasonable level of selectivity in term of the false positive rate. Moreover, employment of the multiple comparison correction method to update the default prior distribution significantly improved the performance of Bayesian second-level fMRI analysis. However, previous studies have utilized the default prior distribution and did not consider the nature of each individual study. Thus, in the present study, a method to adjust the Cauchy prior distribution based on a priori information, which can be acquired from the results of relevant previous studies, was proposed and tested. A Cauchy prior distribution was adjusted based on the contrast, noise strength, and proportion of true positives that were estimated from a meta-analysis of relevant previous studies. In the present study, both the simulated images and real contrast images from two previous studies were used to evaluate the performance of the proposed method. The results showed that the employment of the prior adjustment method resulted in improved performance of Bayesian second-level fMRI analysis.

Keywords

References

  1. Behav Res Methods. 2019 Jun;51(3):1042-1058 [PMID: 30719688]
  2. Neuroimage. 2012 Feb 1;59(3):2349-61 [PMID: 21963913]
  3. Neuroinformatics. 2005;3(1):65-78 [PMID: 15897617]
  4. J Cogn Neurosci. 2017 Dec;29(12):2011-2024 [PMID: 28777056]
  5. Brain Sci. 2019 Aug 12;9(8): [PMID: 31409029]
  6. Front Neuroinform. 2015 Apr 10;9:8 [PMID: 25914639]
  7. Cereb Cortex. 2002 Feb;12(2):178-86 [PMID: 11739265]
  8. eNeuro. 2018 Feb 14;5(1): [PMID: 29464194]
  9. Soc Neurosci. 2018 Jun;13(3):257-267 [PMID: 28446105]
  10. Elife. 2020 Mar 04;9: [PMID: 32129761]
  11. Neuroimage. 2004 May;22(1):83-94 [PMID: 15109999]
  12. Nat Methods. 2011 Jun 26;8(8):665-70 [PMID: 21706013]
  13. J Am Stat Assoc. 2020;115(530):501-520 [PMID: 33060871]
  14. Nature. 2008 Jun 12;453(7197):869-78 [PMID: 18548064]
  15. Front Neuroinform. 2018 Feb 02;12:1 [PMID: 29456498]
  16. Multivariate Behav Res. 2018 Mar-Apr;53(2):267-291 [PMID: 29324055]
  17. Psychosom Med. 2015 Feb-Mar;77(2):114-25 [PMID: 25647751]
  18. Nat Hum Behav. 2019 Aug;3(8):768-771 [PMID: 31253883]
  19. Sci Rep. 2017 Aug 18;7(1):8742 [PMID: 28821746]
  20. Neuroimage. 2018 Aug 1;176:404-416 [PMID: 29738911]
  21. J Pers Soc Psychol. 2009 Nov;97(5):883-92 [PMID: 19857008]
  22. Psychon Bull Rev. 2018 Feb;25(1):35-57 [PMID: 28779455]
  23. Proc Natl Acad Sci U S A. 2016 Jul 12;113(28):7900-5 [PMID: 27357684]
  24. Psychol Sci. 2020 Jul;31(7):792-806 [PMID: 32489141]
  25. Hum Brain Mapp. 2009 Sep;30(9):2907-26 [PMID: 19172646]
  26. Cogn Neurosci. 2020 Jul;11(3):157-169 [PMID: 31855500]
  27. Cogn Neurosci. 2019 Jan - Apr;10(2):66-76 [PMID: 30663513]
  28. Neuroimage. 2012 Aug 15;62(2):575-88 [PMID: 22542637]
  29. Hum Brain Mapp. 2012 Jan;33(1):1-13 [PMID: 21305667]
  30. Psychon Bull Rev. 2018 Feb;25(1):58-76 [PMID: 28685272]
  31. Nature. 2001 Jul 12;412(6843):150-7 [PMID: 11449264]
  32. Nat Neurosci. 2018 Feb;21(2):283-289 [PMID: 29292378]
  33. Multivariate Behav Res. 2012 Nov;47(6):877-903 [PMID: 26735007]
  34. Neuroimage. 2014 May 1;91:412-9 [PMID: 24412399]
  35. Psychoneuroendocrinology. 2014 Apr;42:188-98 [PMID: 24636515]

Word Cloud

Created with Highcharts 10.0.0fMRIanalysisdistributionmethodpriorBayesiansecond-levelpreviousstudiesresultsperformancestudyCauchyBayesshowedhigherratesensitivitypositivesemploymentdefaultimprovedpresentadjustbasedrelevantproposedcontrastimagesPreviousresearchshownpotentialvaluemethodsfunctionalmagneticresonanceimaginginstancefactor-appliedhitcomparedfrequentistsuggestinggreaterAlthoughreportedresultablemaintainreasonablelevelselectivitytermfalsepositiveMoreovermultiplecomparisoncorrectionupdatesignificantlyHoweverutilizedconsidernatureindividualThusprioriinformationcanacquiredtestedadjustednoisestrengthproportiontrueestimatedmeta-analysissimulatedrealtwousedevaluateadjustmentresultedfactorMeta-analysisPrior

Similar Articles

Cited By (2)