Multivariate linear mixed model enhanced the power of identifying genome-wide association to poplar tree heights in a randomized complete block design.

Yuhua Chen, Hainan Wu, Wenguo Yang, Wei Zhao, Chunfa Tong
Author Information
  1. Yuhua Chen: Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
  2. Hainan Wu: Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
  3. Wenguo Yang: Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
  4. Wei Zhao: Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
  5. Chunfa Tong: Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.

Abstract

With the advances in high-throughput sequencing technologies, it is not difficult to extract tens of thousands of single-nucleotide polymorphisms (SNPs) across many individuals in a fast and cheap way, making it possible to perform genome-wide association studies (GWAS) of quantitative traits in outbred forest trees. It is very valuable to apply traditional breeding experiments in GWAS for identifying genome variants associated with ecologically and economically important traits in Populus. Here, we reported a GWAS of tree height measured at multiple time points from a randomized complete block design (RCBD), which was established with clones from an F1 hybrid population of Populus deltoides and Populus simonii. A total of 22,670 SNPs across 172 clones in the RCBD were obtained with restriction site-associated DNA sequencing (RADseq) technology. The multivariate mixed linear model was applied by incorporating the pedigree relationship matrix of individuals to test the association of each SNP to the tree heights over 8 time points. Consequently, 41 SNPs were identified significantly associated with the tree height under the P-value threshold determined by Bonferroni correction at the significant level of 0.01. These SNPs were distributed on all but two chromosomes (Chr02 and Chr18) and explained the phenotypic variance ranged from 0.26% to 2.64%, amounting to 63.68% in total. Comparison with previous mapping studies for poplar height as well as the candidate genes of these detected SNPs were also investigated. We therefore showed that the application of multivariate linear mixed model to the longitudinal phenotypic data from the traditional breeding experimental design facilitated to identify far more genome-wide variants for tree height in poplar. The significant SNPs identified in this study would enhance understanding of molecular mechanism for growth traits and would accelerate marker-assisted breeding programs in Populus.

Keywords

Associated Data

figshare | 10.25387/g3.13017866

References

  1. G3 (Bethesda). 2019 Sep 4;9(9):2963-2975 [PMID: 31296616]
  2. Brief Bioinform. 2009 Nov;10(6):664-75 [PMID: 19933212]
  3. Genetics. 1989 Jan;121(1):185-99 [PMID: 2563713]
  4. G3 (Bethesda). 2013 Aug 07;3(8):1287-99 [PMID: 23733887]
  5. Brief Bioinform. 2018 Nov 14;: [PMID: 30445432]
  6. PLoS One. 2018 Feb 23;13(2):e0193415 [PMID: 29474475]
  7. Bioinformatics. 2019 May 15;35(10):1786-1788 [PMID: 30321304]
  8. Plant Sci. 2013 Nov;212:72-101 [PMID: 24094056]
  9. PLoS Genet. 2012;8(5):e1002685 [PMID: 22570636]
  10. Genetics. 1994 Apr;136(4):1457-68 [PMID: 8013918]
  11. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  12. Ann Bot. 2002 Dec;90(6):681-9 [PMID: 12451023]
  13. BMC Genomics. 2016 Aug 18;17:656 [PMID: 27538483]
  14. Bioinformatics. 2009 Jul 15;25(14):1754-60 [PMID: 19451168]
  15. DNA Res. 2014 Aug;21(4):355-67 [PMID: 24510440]
  16. Plant Mol Biol. 2019 Jan;99(1-2):1-15 [PMID: 30519826]
  17. Genet Mol Biol. 2012 Jul;35(3):622-31 [PMID: 23055802]
  18. Nucleic Acids Res. 2007 Jan;35(Database issue):D61-5 [PMID: 17130148]
  19. PLoS One. 2012;7(2):e30619 [PMID: 22312429]
  20. Genetics. 2007 Jan;175(1):399-409 [PMID: 17110498]
  21. Plant Cell Physiol. 2020 Aug 1;61(8):1427-1437 [PMID: 32186727]
  22. Am J Hum Genet. 2007 Aug;81(2):321-37 [PMID: 17668381]
  23. Bioinformatics. 2007 Oct 1;23(19):2633-5 [PMID: 17586829]
  24. PLoS One. 2016 Mar 10;11(3):e0150692 [PMID: 26964097]
  25. Nat Genet. 2012 Jun 17;44(7):821-4 [PMID: 22706312]
  26. Nat Genet. 2010 Apr;42(4):348-54 [PMID: 20208533]
  27. Am J Hum Genet. 2011 Jan 7;88(1):76-82 [PMID: 21167468]
  28. Plant J. 2018 Jan;93(2):286-296 [PMID: 29168265]
  29. PLoS One. 2014 Apr 24;9(4):e95923 [PMID: 24763738]
  30. PLoS Genet. 2008 Nov;4(11):e1000282 [PMID: 19043545]
  31. Front Genet. 2019 Feb 04;10:30 [PMID: 30778369]
  32. New Phytol. 2016 Feb;209(3):1067-82 [PMID: 26499329]
  33. Plant Physiol. 2020 Jun;183(2):483-500 [PMID: 32317360]
  34. Nat Methods. 2014 Apr;11(4):407-9 [PMID: 24531419]
  35. Genetics. 2008 Mar;178(3):1709-23 [PMID: 18385116]
  36. Science. 2006 Sep 15;313(5793):1596-604 [PMID: 16973872]
  37. Theor Appl Genet. 1998 Mar;96(3-4):447-57 [PMID: 24710884]
  38. Stat Med. 2003 Nov 30;22(22):3527-41 [PMID: 14601017]
  39. Plant Genome. 2018 Jul;11(2): [PMID: 30025021]
  40. BMC Genomics. 2015 Mar 17;16:196 [PMID: 25888203]
  41. BMC Plant Biol. 2012 Sep 26;12:173 [PMID: 23013168]
  42. Am J Hum Genet. 2014 May 1;94(5):662-76 [PMID: 24746957]
  43. PLoS Genet. 2007 Apr 6;3(4):e51 [PMID: 17411342]
  44. J Dairy Sci. 2008 Nov;91(11):4414-23 [PMID: 18946147]
  45. Sci Rep. 2016 May 05;6:25156 [PMID: 27146517]
  46. Genetics. 1995 Feb;139(2):963-73 [PMID: 7713445]
  47. Nat Genet. 2010 Jul;42(7):565-9 [PMID: 20562875]
  48. BMC Bioinformatics. 2017 Nov 23;18(1):515 [PMID: 29169342]
  49. J Mol Biol. 1990 Oct 5;215(3):403-10 [PMID: 2231712]
  50. Nat Genet. 2006 Feb;38(2):203-8 [PMID: 16380716]
  51. Mol Genet Genomics. 2017 Feb;292(1):77-91 [PMID: 27722913]
  52. Front Plant Sci. 2017 May 08;8:706 [PMID: 28533786]

MeSH Term

Genome-Wide Association Study
Linear Models
Plant Breeding
Polymorphism, Single Nucleotide
Populus
Trees

Word Cloud

Created with Highcharts 10.0.0SNPsPopulustreegenome-wideassociationheightdesignmixedlinearmodelGWAStraitsbreedingrandomizedcompleteblockpoplarsequencingsingle-nucleotideacrossindividualsstudiestraditionalidentifyingvariantsassociatedtimepointsRCBDclonestotalmultivariateheightsidentifiedsignificant0phenotypicstudyadvanceshigh-throughputtechnologiesdifficultextracttensthousandspolymorphismsmanyfastcheapwaymakingpossibleperformquantitativeoutbredforesttreesvaluableapplyexperimentsgenomeecologicallyeconomicallyimportantreportedmeasuredmultipleestablishedF1hybridpopulationdeltoidessimonii22670172obtainedrestrictionsite-associatedDNARADseqtechnologyappliedincorporatingpedigreerelationshipmatrixtestSNP8Consequently41significantlyP-valuethresholddeterminedBonferronicorrectionlevel01distributedtwochromosomesChr02Chr18explainedvarianceranged26%264%amounting6368%Comparisonpreviousmappingwellcandidategenesdetectedalsoinvestigatedthereforeshowedapplicationlongitudinaldataexperimentalfacilitatedidentifyfarenhanceunderstandingmolecularmechanismgrowthacceleratemarker-assistedprogramsMultivariateenhancedpowerpolymorphism

Similar Articles

Cited By