Metabolic flexibility across the spectrum of glycemic regulation in youth.

Fida Bacha, Sara Klinepeter Bartz, Maurice Puyau, Anne Adolph, Susan Sharma
Author Information
  1. Fida Bacha: United States Department of Agriculture Agricultural Research Service (USDA/ARS) Children's Nutrition Research Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
  2. Sara Klinepeter Bartz: United States Department of Agriculture Agricultural Research Service (USDA/ARS) Children's Nutrition Research Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
  3. Maurice Puyau: United States Department of Agriculture Agricultural Research Service (USDA/ARS) Children's Nutrition Research Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
  4. Anne Adolph: United States Department of Agriculture Agricultural Research Service (USDA/ARS) Children's Nutrition Research Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.
  5. Susan Sharma: United States Department of Agriculture Agricultural Research Service (USDA/ARS) Children's Nutrition Research Center, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA.

Abstract

BACKGROUNDMetabolic flexibility (MF) refers to the relative ability to utilize lipid and carbohydrate substrates and to transition between them. It is not clear whether MF is impaired in obese youth and what the determining factors are.METHODSWe investigated the determinants of MF (increased respiratory exchange ratio [ΔRER] under insulin-stimulated conditions) in pubertal youth (n = 104; 15.6 ± 1.8 years) with obesity across the spectrum of glucose tolerance compared with normal weight (NW) controls, including body composition (fat-free mass [FFM], %body fat), visceral adipose fat (VAT) (MRI), glycemia, and insulin sensitivity (IS) [3-hour hyperinsulinemic-euglycemic clamp with measurement of lipolysis ([2H5] glycerol), free fatty acids (FFAs), and RER (indirect calorimetry)].RESULTSYouth with prediabetes and type 2 diabetes had lower ΔRER and oxidative and nonoxidative glucose disposal compared with NW, with no significant difference in ΔRER between NW and obese with normal glucose tolerance. In multiple regression analysis, ISFFM (β = 0.4, P = 0.004), percentage suppression of FFAs (r = 0.26, P = 0.007), and race/ethnicity (β = -0.23, P = 0.02) contributed to the variance in ΔRER (R2 = 0.30, P < 0.001) independent of percentage body fat (or VAT), sex, Tanner stage, and hemoglobin A1c.ConclusionMF is defective at the extreme of the metabolic phenotype in obese youth with dysglycemia related to a defect in IS limiting substrate utilization.FUNDINGUSDA/ARS Project Number 3092-51000-057.

Keywords

References

  1. Am J Physiol. 1990 Nov;259(5 Pt 1):E650-7 [PMID: 2240203]
  2. J Endocr Soc. 2017 Jun 27;1(8):1029-1040 [PMID: 29264555]
  3. Int J Obes (Lond). 2008 Dec;32 Suppl 7:S109-19 [PMID: 19136979]
  4. Diabetes Care. 2010 Oct;33(10):2225-31 [PMID: 20592052]
  5. J Clin Endocrinol Metab. 2002 Nov;87(11):5168-78 [PMID: 12414888]
  6. Am J Clin Nutr. 2003 Feb;77(2):479-89 [PMID: 12540411]
  7. Diabetes. 2005 Jul;54(7):1926-33 [PMID: 15983191]
  8. J Clin Invest. 1991 Jul;88(1):168-73 [PMID: 2056116]
  9. Diabetes. 2008 Apr;57(4):841-5 [PMID: 18285553]
  10. Pediatr Diabetes. 2013 Mar;14(2):106-11 [PMID: 22913617]
  11. Diabetes. 2007 Aug;56(8):2142-7 [PMID: 17536063]
  12. Am J Physiol Endocrinol Metab. 2007 Jul;293(1):E264-9 [PMID: 17616607]
  13. Diabetes Care. 2018 Aug;41(8):1696-1706 [PMID: 29941497]
  14. Am J Physiol. 1999 Dec;277(6):E1130-41 [PMID: 10600804]
  15. Metabolism. 2010 Sep;59(9):1358-64 [PMID: 20129629]
  16. Cell Metab. 2014 Oct 7;20(4):593-602 [PMID: 25264246]
  17. Proc Natl Acad Sci U S A. 2007 Jul 31;104(31):12587-94 [PMID: 17640906]
  18. Mol Cell Endocrinol. 2012 Apr 28;353(1-2):88-100 [PMID: 22108437]
  19. J Clin Endocrinol Metab. 2006 Apr;91(4):1462-9 [PMID: 16449343]
  20. J Clin Invest. 2000 Jul;106(2):171-6 [PMID: 10903330]
  21. Pediatr Diabetes. 2005 Jun;6(2):100-2 [PMID: 15963038]
  22. J Appl Physiol Respir Environ Exerc Physiol. 1983 Aug;55(2):628-34 [PMID: 6618956]
  23. J Clin Endocrinol Metab. 2011 Feb;96(2):494-503 [PMID: 21106709]
  24. Proc Nutr Soc. 2004 May;63(2):363-8 [PMID: 15294056]
  25. Diabetes. 2007 May;56(5):1376-81 [PMID: 17287462]
  26. Diabetologia. 2016 Oct;59(10):2203-7 [PMID: 27376543]
  27. Gastroenterology. 2007 Aug;133(2):496-506 [PMID: 17681171]
  28. Pediatr Diabetes. 2018 Mar;19(2):205-211 [PMID: 28726334]
  29. J Clin Endocrinol Metab. 2005 Aug;90(8):4496-502 [PMID: 15928240]
  30. Am J Physiol. 1998 Apr;274(4):E737-43 [PMID: 9575836]
  31. Diabetes Care. 2006 Jul;29(7):1599-604 [PMID: 16801585]
  32. Diabetes Care. 2019 Jan;42(Suppl 1):S13-S28 [PMID: 30559228]
  33. Diabetes. 2001 Jul;50(7):1612-7 [PMID: 11423483]
  34. Am J Physiol Endocrinol Metab. 2006 Oct;291(4):E697-703 [PMID: 16684857]
  35. Diabetes Care. 2004 Feb;27(2):547-52 [PMID: 14747242]
  36. J Clin Invest. 2005 Jul;115(7):1699-702 [PMID: 16007246]
  37. J Lipid Res. 2012 Feb;53(2):321-4 [PMID: 22147838]
  38. J Clin Endocrinol Metab. 2013 May;98(5):2062-9 [PMID: 23526462]
  39. J Pediatr. 1998 Jan;132(1):98-104 [PMID: 9470008]
  40. J Clin Endocrinol Metab. 2005 Jun;90(6):3731-7 [PMID: 15797955]
  41. PLoS One. 2013;8(2):e51648 [PMID: 23418416]

MeSH Term

Adipose Tissue
Adolescent
Blood Glucose
Body Composition
Diabetes Mellitus, Type 2
Fatty Acids, Nonesterified
Female
Glucose
Glucose Clamp Technique
Glycated Hemoglobin
Humans
Insulin
Insulin Resistance
Intra-Abdominal Fat
Lipolysis
Male
Obesity
Oxidation-Reduction

Chemicals

Blood Glucose
Fatty Acids, Nonesterified
Glycated Hemoglobin A
Insulin
hemoglobin A1c protein, human
Glucose

Word Cloud

Created with Highcharts 10.0.0=0youthPMFobeseglucoseNWfatΔRERflexibilityacrossspectrumtolerancecomparednormalbodyVATISFFAsβpercentageBACKGROUNDMetabolicrefersrelativeabilityutilizelipidcarbohydratesubstratestransitionclearwhetherimpaireddeterminingfactorsareMETHODSWeinvestigateddeterminantsincreasedrespiratoryexchangeratio[ΔRER]insulin-stimulatedconditionspubertaln104156±18yearsobesityweightcontrolsincludingcompositionfat-freemass[FFM]%bodyvisceraladiposeMRIglycemiainsulinsensitivity[3-hourhyperinsulinemic-euglycemicclampmeasurementlipolysis[2H5]glycerolfreefattyacidsRERindirectcalorimetry]RESULTSYouthprediabetestype2diabetesloweroxidativenonoxidativedisposalsignificantdifferencemultipleregressionanalysisISFFM4004suppressionr26007race/ethnicity-02302contributedvarianceR230<001independentsexTannerstagehemoglobinA1cConclusionMFdefectiveextrememetabolicphenotypedysglycemiarelateddefectlimitingsubstrateutilizationFUNDINGUSDA/ARSProjectNumber3092-51000-057MetabolicglycemicregulationDiabetesInsulinMetabolismObesity

Similar Articles

Cited By