Restricted mean survival time as a function of restriction time.

Yingchao Zhong, Douglas E Schaubel
Author Information
  1. Yingchao Zhong: Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA. ORCID
  2. Douglas E Schaubel: Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, Pennsylvania, USA. ORCID

Abstract

Restricted mean survival time (RMST) is a clinically interpretable and meaningful survival metric that has gained popularity in recent years. Several methods are available for regression modeling of RMST, most based on pseudo-observations or what is essentially an inverse-weighted complete-case analysis. No existing RMST regression method allows for the covariate effects to be expressed as functions over time. This is a considerable limitation, in light of the many hazard regression methods that do accommodate such effects. To address this void in the literature, we propose RMST methods that permit estimating time-varying effects. In particular, we propose an inference framework for directly modeling RMST as a continuous function of L. Large-sample properties are derived. Simulation studies are performed to evaluate the performance of the methods in finite sample sizes. The proposed framework is applied to kidney transplant data obtained from the Scientific Registry of Transplant Recipients.

Keywords

References

  1. Biometrics. 2011 Mar;67(1):29-38 [PMID: 20560935]
  2. Transplantation. 2019 Aug;103(8):1714-1721 [PMID: 30451742]
  3. Ann Intern Med. 2015 Jul 21;163(2):127-34 [PMID: 26054047]
  4. Biometrics. 2001 Dec;57(4):1030-8 [PMID: 11764241]
  5. Biometrics. 2011 Sep;67(3):740-9 [PMID: 21039400]
  6. J Hyg (Lond). 1949 Jun;47(2):188 [PMID: 15406758]
  7. Pharm Stat. 2018 May;17(3):202-213 [PMID: 29282880]
  8. Biometrics. 2000 Sep;56(3):779-88 [PMID: 10985216]
  9. Lifetime Data Anal. 2004 Dec;10(4):335-50 [PMID: 15690989]
  10. Biostatistics. 2014 Apr;15(2):222-33 [PMID: 24292992]
  11. Lifetime Data Anal. 2018 Jan;24(1):176-199 [PMID: 28224260]
  12. J Clin Oncol. 2014 Aug 1;32(22):2380-5 [PMID: 24982461]
  13. Biometrics. 2008 Sep;64(3):724-732 [PMID: 18162108]
  14. BMC Med Res Methodol. 2013 Dec 07;13:152 [PMID: 24314264]
  15. Biometrics. 1999 Dec;55(4):1101-7 [PMID: 11315054]
  16. Stat Med. 2011 Aug 30;30(19):2409-21 [PMID: 21611958]
  17. Biometrics. 2016 Mar;72(1):215-21 [PMID: 26302239]
  18. Transplantation. 2009 Jul 27;88(2):231-6 [PMID: 19623019]
  19. Stat Methods Med Res. 2010 Feb;19(1):71-99 [PMID: 19654170]
  20. Biometrics. 2018 Jun;74(2):694-702 [PMID: 28901017]

Grants

  1. R01 DK070869/NIDDK NIH HHS

MeSH Term

Proportional Hazards Models
Regression Analysis
Sample Size
Survival Analysis
Survival Rate

Word Cloud

Created with Highcharts 10.0.0survivaltimeRMSTmethodsmeanregressioneffectsRestrictedmodelinganalysisproposeframeworkfunctionclinicallyinterpretablemeaningfulmetricgainedpopularityrecentyearsSeveralavailablebasedpseudo-observationsessentiallyinverse-weightedcomplete-caseexistingmethodallowscovariateexpressedfunctionsconsiderablelimitationlightmanyhazardaccommodateaddressvoidliteraturepermitestimatingtime-varyingparticularinferencedirectlycontinuousLLarge-samplepropertiesderivedSimulationstudiesperformedevaluateperformancefinitesamplesizesproposedappliedkidneytransplantdataobtainedScientificRegistryTransplant Recipientsrestrictiongeneralizedlinearmodelinverseweightingrestrictedtruncation

Similar Articles

Cited By