Decadal (2006-2018) dynamics of Southwestern Atlantic's largest turbid zone reefs.

Carolina D Teixeira, Pamela M Chiroque-Solano, Felipe V Ribeiro, Lélis A Carlos-Júnior, Leonardo M Neves, Paulo S Salomon, Leonardo T Salgado, Ludmilla N Falsarella, Gabriel O Cardoso, Lívia B Villela, Matheus O Freitas, Fernando C Moraes, Alex C Bastos, Rodrigo L Moura
Author Information
  1. Carolina D Teixeira: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  2. Pamela M Chiroque-Solano: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  3. Felipe V Ribeiro: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  4. Lélis A Carlos-Júnior: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. ORCID
  5. Leonardo M Neves: Laboratório de Ecologia Aquática e Educação Ambiental, Universidade Federal Rural do Rio de Janeiro, Três Rios, Rio de Janeiro, RJ, Brazil.
  6. Paulo S Salomon: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  7. Leonardo T Salgado: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (JBRJ), Rio de Janeiro, RJ, Brazil.
  8. Ludmilla N Falsarella: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  9. Gabriel O Cardoso: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. ORCID
  10. Lívia B Villela: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
  11. Matheus O Freitas: Instituto Meros do Brasil, Curitiba, Paraná, Brazil.
  12. Fernando C Moraes: Instituto de Pesquisas Jardim Botânico do Rio de Janeiro (JBRJ), Rio de Janeiro, RJ, Brazil.
  13. Alex C Bastos: Universidade Federal do Espírito Santo, Vitória, Brazil.
  14. Rodrigo L Moura: Instituto de Biologia and SAGE-COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil. ORCID

Abstract

Tropical reefs are declining rapidly due to climate changes and local stressors such as water quality deterioration and overfishing. The so-called marginal reefs sustain significant coral cover and growth but are dominated by fewer species adapted to suboptimal conditions to most coral species. However, the dynamics of marginal systems may diverge from that of the archetypical oligotrophic tropical reefs, and it is unclear whether they are more or less susceptible to anthropogenic stress. Here, we present the largest (100 fixed quadrats at five reefs) and longest time series (13 years) of benthic cover data for Southwestern Atlantic turbid zone reefs, covering sites under contrasting anthropogenic and oceanographic forcing. Specifically, we addressed how benthic cover changed among habitats and sites, and possible dominance-shift trends. We found less temporal variation in offshore pinnacles' tops than on nearshore ones and, conversely, higher temporal fluctuation on offshore pinnacles' walls than on nearshore ones. In general, the Abrolhos reefs sustained a stable coral cover and we did not record regional-level dominance shifts favoring other organisms. However, coral decline was evidenced in one reef near a dredging disposal site. Relative abundances of longer-lived reef builders showed a high level of synchrony, which indicates that their dynamics fluctuate under similar drivers. Therefore, changes on those drivers could threaten the stability of these reefs. With the intensification of thermal anomalies and land-based stressors, it is unclear whether the Abrolhos reefs will keep providing key ecosystem services. It is paramount to restrain local stressors that contributed to coral reef deterioration in the last decades, once reversal and restoration tend to become increasingly difficult as coral reefs degrade further and climate changes escalate.

References

  1. Conserv Biol. 2018 Oct;32(5):1096-1106 [PMID: 28646574]
  2. Ecol Appl. 2020 Jan;30(1):e02008 [PMID: 31550393]
  3. PeerJ. 2019 Aug 30;7:e7459 [PMID: 31531268]
  4. Nature. 2006 Mar 2;440(7080):80-2 [PMID: 16511493]
  5. Ecology. 2020 May;101(5):e02987 [PMID: 31960414]
  6. Glob Chang Biol. 2020 Mar;26(3):1285-1294 [PMID: 31789454]
  7. iScience. 2019 Mar 29;13:254-268 [PMID: 30870783]
  8. Ecol Appl. 2011 Sep;21(6):2223-31 [PMID: 21939056]
  9. Trends Ecol Evol. 2013 Jul;28(7):389-95 [PMID: 23769417]
  10. Environ Microbiol. 2015 Oct;17(10):3832-46 [PMID: 25817914]
  11. Mar Pollut Bull. 2018 Oct;135:551-561 [PMID: 30301073]
  12. PLoS One. 2012;7(4):e35171 [PMID: 22536356]
  13. Mar Pollut Bull. 2014 Mar 15;80(1-2):24-9 [PMID: 24486044]
  14. Nat Microbiol. 2016 Apr 25;1(6):16042 [PMID: 27572833]
  15. PLoS One. 2013 May 31;8(5):e65073 [PMID: 23741459]
  16. Sci Total Environ. 2019 Dec 20;697:134038 [PMID: 32380596]
  17. Philos Trans R Soc Lond B Biol Sci. 2005 Feb 28;360(1454):385-95 [PMID: 15814352]
  18. Science. 1994 Sep 9;265(5178):1547-51 [PMID: 17801530]
  19. Microb Ecol. 2015 Feb;69(2):267-80 [PMID: 25213651]
  20. PeerJ. 2018 Aug 10;6:e5419 [PMID: 30128199]
  21. Sci Adv. 2016 Apr 22;2(4):e1501252 [PMID: 27152336]
  22. Sci Rep. 2018 Jun 25;8(1):9638 [PMID: 29941983]
  23. Am Nat. 2008 Aug;172(2):E48-66 [PMID: 18598188]
  24. Aquat Toxicol. 2017 Mar;184:1-13 [PMID: 28063936]
  25. Nature. 2017 Mar 15;543(7645):373-377 [PMID: 28300113]
  26. Ann Rev Mar Sci. 2019 Jan 3;11:307-334 [PMID: 30606097]
  27. PLoS One. 2015 Jul 08;10(7):e0130312 [PMID: 26154157]
  28. Ecol Lett. 2013 Feb;16(2):140-50 [PMID: 23095077]
  29. PLoS One. 2016 Apr 27;11(4):e0154417 [PMID: 27119151]
  30. Ecology. 2009 Jun;90(6):1478-84 [PMID: 19569362]
  31. PLoS One. 2013;8(1):e54260 [PMID: 23365655]
  32. Mar Environ Res. 2019 May;147:138-148 [PMID: 31097215]
  33. Nature. 2004 Jun 24;429(6994):827-33 [PMID: 15215854]
  34. Science. 2003 Aug 15;301(5635):955-8 [PMID: 12920296]
  35. Sci Rep. 2016 Nov 08;6:36260 [PMID: 27824083]
  36. Proc Natl Acad Sci U S A. 2012 Oct 30;109(44):17995-9 [PMID: 23027961]
  37. Sci Adv. 2020 Apr 22;6(17):eaax9395 [PMID: 32426458]

MeSH Term

Aquatic Organisms
Atlantic Ocean
Climate Change
Coral Reefs

Word Cloud

Created with Highcharts 10.0.0reefscoralcoverchangesstressorsdynamicsreefclimatelocaldeteriorationmarginalspeciesHoweverunclearwhetherlessanthropogeniclargestbenthicSouthwesternturbidzonesitestemporaloffshorepinnacles'nearshoreonesAbrolhosdriversTropicaldecliningrapidlyduewaterqualityoverfishingso-calledsustainsignificantgrowthdominatedfeweradaptedsuboptimalconditionssystemsmaydivergearchetypicaloligotrophictropicalsusceptiblestresspresent100fixedquadratsfivelongesttimeseries13yearsdataAtlanticcoveringcontrastingoceanographicforcingSpecificallyaddressedchangedamonghabitatspossibledominance-shifttrendsfoundvariationtopsconverselyhigherfluctuationwallsgeneralsustainedstablerecordregional-leveldominanceshiftsfavoringorganismsdeclineevidencedoneneardredgingdisposalsiteRelativeabundanceslonger-livedbuildersshowedhighlevelsynchronyindicatesfluctuatesimilarThereforethreatenstabilityintensificationthermalanomaliesland-basedwillkeepprovidingkeyecosystemservicesparamountrestraincontributedlastdecadesreversalrestorationtendbecomeincreasinglydifficultdegradeescalateDecadal2006-2018Atlantic's

Similar Articles

Cited By