Gene expression in tonsils in swine following infection with porcine reproductive and respiratory syndrome virus.

Qian Dong, Joan K Lunney, Kyu-Sang Lim, Yet Nguyen, Andrew S Hess, Hamid Beiki, Raymond R R Rowland, Kristen Walker, James M Reecy, Christopher K Tuggle, Jack C M Dekkers
Author Information
  1. Qian Dong: Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
  2. Joan K Lunney: USDA, ARS, BARC, APDL, Beltsville, MD, 20705, USA.
  3. Kyu-Sang Lim: Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
  4. Yet Nguyen: Department of Statistics, Iowa State University, Ames, Iowa, 50011, USA.
  5. Andrew S Hess: Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
  6. Hamid Beiki: Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
  7. Raymond R R Rowland: College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA.
  8. Kristen Walker: USDA, ARS, BARC, APDL, Beltsville, MD, 20705, USA.
  9. James M Reecy: Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
  10. Christopher K Tuggle: Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA.
  11. Jack C M Dekkers: Department of Animal Science, Iowa State University, Ames, Iowa, 50011, USA. jdekkers@iastate.edu. ORCID

Abstract

BACKGROUND: Porcine reproductive and respiratory syndrome (PRRS) is a threat to pig production worldwide. Our objective was to understand mechanisms of persistence of PRRS virus (PRRSV) in tonsil. Transcriptome data from tonsil samples collected at 42 days post infection (dpi) were generated by RNA-seq and NanoString on 51 Pigs that were selected to contrast the two PRRSV isolates used, NVSL and KS06, high and low tonsil viral level at 42 dpi, and the favorable and unfavorable genotypes at a genetic marker (WUR) for the putative PRRSV resistance gene GBP5.
RESULTS: The number of differentially expressed genes (DEGs) differed markedly between models with and without accounting for cell-type enrichments (CE) in the samples that were predicted from the RNA-seq data. This indicates that differences in cell composition in tissues that consist of multiple cell types, such as tonsil, can have a large impact on observed differences in gene expression. Based on both the NanoString and the RNA-seq data, KS06-infected Pigs showed greater activation, or less inhibition, of immune response in tonsils at 42 dpi than NVSL-infected Pigs, with and without accounting for CE. This suggests that the NVSL virus may be better than the KS06 virus at evading host immune response and persists in tonsils by weakening, or preventing, host immune responses. Pigs with high viral levels showed larger CE of immune cells than low viral level Pigs, potentially to trigger stronger immune responses. Presence of high tonsil virus was associated with a stronger immune response, especially innate immune response through interferon signaling, but these differences were not significant when accounting for CE. Genotype at WUR was associated with different effects on immune response in tonsils of Pigs during the persistence stage, depending on viral isolate and tonsil viral level.
CONCLUSIONS: Results of this study provide insights into the effects of PRRSV isolate, tonsil viral level, and WUR genotype on host immune response and into potential mechanisms of PRRSV persistence in tonsils that could be targeted to improve strategies to reduce viral rebreaks. Finally, to understand transcriptome responses in tissues that consist of multiple cell types, it is important to consider differences in cell composition.

Keywords

References

  1. Anim Health Res Rev. 2003 Dec;4(2):143-55 [PMID: 15134296]
  2. J Virol. 2000 Nov;74(22):10834-7 [PMID: 11044133]
  3. Res Vet Sci. 2016 Feb;104:117-22 [PMID: 26850549]
  4. Nat Methods. 2013 Dec;10(12):1177-84 [PMID: 24185837]
  5. Cancer Metastasis Rev. 2017 Jun;36(2):195-198 [PMID: 28667366]
  6. J Biol Chem. 2003 Feb 7;278(6):4151-9 [PMID: 12454018]
  7. Bioinformatics. 2014 Feb 15;30(4):523-30 [PMID: 24336805]
  8. J Immunol. 2013 May 1;190(9):4685-91 [PMID: 23536632]
  9. J Immunol. 2003 Mar 15;170(6):2904-11 [PMID: 12626541]
  10. Genet Sel Evol. 2016 Jun 20;48(1):43 [PMID: 27324857]
  11. J Anim Sci. 2017 Jan;95(1):16-38 [PMID: 28177360]
  12. Vet Immunol Immunopathol. 1999 Nov 30;71(3-4):257-62 [PMID: 10587305]
  13. J Leukoc Biol. 2008 Jun;83(6):1309-22 [PMID: 18347074]
  14. BMC Genomics. 2010 Jan 11;11:22 [PMID: 20064247]
  15. Nucleic Acids Res. 2015 Sep 3;43(15):e97 [PMID: 25925576]
  16. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  17. Blood. 2014 May 1;123(18):2759-67 [PMID: 24585776]
  18. Biochim Biophys Acta Mol Cell Res. 2017 Nov;1864(11 Pt B):2071-2081 [PMID: 28624438]
  19. BMC Genomics. 2015 May 28;16:412 [PMID: 26016888]
  20. Nat Immunol. 2010 Feb;11(2):141-7 [PMID: 19946272]
  21. Nucleic Acids Res. 2016 Nov 16;44(20):e151 [PMID: 27471031]
  22. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  23. Viral Immunol. 2010 Apr;23(2):127-34 [PMID: 20373993]
  24. Vet Immunol Immunopathol. 2001 Oct;82(3-4):165-82 [PMID: 11587732]
  25. Vet Microbiol. 1997 Apr;55(1-4):231-40 [PMID: 9220618]
  26. Immunogenetics. 2011 Jul;63(7):437-48 [PMID: 21380581]
  27. J Gen Virol. 2013 Oct;94(Pt 10):2141-2163 [PMID: 23939974]
  28. Crit Rev Immunol. 2004;24(1):1-37 [PMID: 14995912]
  29. Immunology. 1996 Sep;89(1):76-83 [PMID: 8911143]
  30. Allergy. 2018 Jan;73(1):125-136 [PMID: 28745029]
  31. J Interferon Cytokine Res. 1998 Jul;18(7):485-90 [PMID: 9712364]
  32. Virology. 2018 Nov;524:78-89 [PMID: 30165309]
  33. Mol Cell Biol. 2013 Jun;33(12):2388-401 [PMID: 23572561]
  34. J Anim Sci. 2012 Jun;90(6):1733-46 [PMID: 22205662]
  35. BMC Proc. 2011 Jun 03;5 Suppl 4:S30 [PMID: 21645311]
  36. PLoS One. 2013 Dec 17;8(12):e83567 [PMID: 24358295]
  37. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  38. Prev Vet Med. 2017 Jul 1;142:16-29 [PMID: 28606362]
  39. Viral Immunol. 2010 Oct;23(5):457-66 [PMID: 20883160]
  40. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  41. J Virol. 2010 Sep;84(17):8700-11 [PMID: 20554771]
  42. J Anim Sci. 2019 Feb 1;97(2):536-547 [PMID: 30496411]
  43. Int Immunol. 2008 Sep;20(9):1181-7 [PMID: 18635581]
  44. BMC Genomics. 2019 May 7;20(1):344 [PMID: 31064321]
  45. Immunity. 2008 Jan;28(1):64-74 [PMID: 18191595]
  46. Trends Cell Biol. 2005 Mar;15(3):163-71 [PMID: 15752980]
  47. BMC Bioinformatics. 2008 Dec 29;9:559 [PMID: 19114008]
  48. Anim Health Res Rev. 2008 Jun;9(1):59-69 [PMID: 18348741]
  49. Oncogene. 2013 Mar 21;32(12):1497-507 [PMID: 22614019]
  50. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  51. J Exp Med. 2010 Mar 15;207(3):623-35 [PMID: 20156974]
  52. Virus Res. 2010 Dec;154(1-2):123-32 [PMID: 20659507]
  53. Vet Microbiol. 2013 Dec 27;167(3-4):638-50 [PMID: 24120935]
  54. J Leukoc Biol. 1994 Oct;56(4):507-13 [PMID: 7930948]
  55. Nature. 2017 May 25;545(7655):505-509 [PMID: 28514442]
  56. Genome Biol. 2017 Nov 15;18(1):220 [PMID: 29141660]

Grants

  1. 12-061/National Pork Board
  2. 14-223/National Pork Board (US)
  3. 2013-68004-20362/USDA-NIFA
  4. ./Genome Canada

MeSH Term

Animals
Genotype
Immunity, Innate
Palatine Tonsil
Porcine Reproductive and Respiratory Syndrome
Porcine respiratory and reproductive syndrome virus
Sus scrofa
Swine
Transcriptome
Viral Load
Viremia

Word Cloud

Created with Highcharts 10.0.0immunetonsilviralPRRSVresponseviruspigstonsilsRNA-seqlevelWURCEdifferencescellpersistencedatadpihighaccountingcompositionhostresponsesreproductiverespiratorysyndromePRRSunderstandmechanismssamplesinfectionNanoStringNVSLKS06low42genewithouttissuesconsistmultipletypesexpressionshowedstrongerassociatedeffectsisolateBACKGROUND:PorcinethreatpigproductionworldwideobjectiveTranscriptomecollected42 dayspostgenerated51selectedcontrasttwoisolatesusedfavorableunfavorablegenotypesgeneticmarkerputativeresistanceGBP5RESULTS:numberdifferentiallyexpressedgenesDEGsdifferedmarkedlymodelscell-typeenrichmentspredictedindicatescanlargeimpactobservedBasedKS06-infectedgreateractivationlessinhibitionNVSL-infectedsuggestsmaybetterevadingpersistsweakeningpreventingPigslevelslargercellspotentiallytriggerPresenceespeciallyinnateinterferonsignalingsignificantGenotypedifferentstagedependingCONCLUSIONS:ResultsstudyprovideinsightsgenotypepotentialtargetedimprovestrategiesreducerebreaksFinallytranscriptomeimportantconsiderGeneswinefollowingporcineCellIsolatePersistencePigTonsils

Similar Articles

Cited By