Broadening the ecology of fear: non-lethal effects arise from diverse responses to predation and parasitism.

D R Daversa, R F Hechinger, E Madin, A Fenton, A I Dell, E G Ritchie, J Rohr, V H W Rudolf, K D Lafferty
Author Information
  1. D R Daversa: La Kretz Center for California Conservation Science, Institute for the Environment and Sustainability, University of California, Los Angeles, CA, USA.
  2. R F Hechinger: Scripps Institution of Oceanography, University of California, San Diego, San Diego, CA, USA.
  3. E Madin: Hawai'i Institute of Marine Biology, University of Hawai'i, Kane'ohe, HI 96744, USA.
  4. A Fenton: Institute of Integrative Biology, University of Liverpool, Liverpool, UK.
  5. A I Dell: National Great Rivers Research and Education Centre (NGRREC), East Alton, IL 62024, USA.
  6. E G Ritchie: School of Life and Environmental Sciences, Centre for Integrative Ecology (Burwood Campus), Deakin University, Geelong, Victoria 3220, Australia.
  7. J Rohr: Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.
  8. V H W Rudolf: BioSciences, Rice University, Houston, TX, USA.
  9. K D Lafferty: Western Ecological Research Center, US Geological Survey, at UC Santa Barbara, Santa Barbara, CA, USA.

Abstract

Research on the 'ecology of fear' posits that defensive prey responses to avoid predation can cause non-lethal effects across ecological scales. Parasites also elicit defensive responses in hosts with associated non-lethal effects, which raises the longstanding, yet unresolved question of how non-lethal effects of parasites compare with those of predators. We developed a framework for systematically answering this question for all types of predator-prey and host-parasite systems. Our framework reveals likely differences in non-lethal effects not only between predators and parasites, but also between different types of predators and parasites. Trait responses should be strongest towards predators, parasitoids and parasitic castrators, but more numerous and perhaps more frequent for parasites than for predators. In a case study of larval amphibians, whose trait responses to both predators and parasites have been relatively well studied, existing data indicate that individuals generally respond more strongly and proactively to short-term predation risks than to parasitism. Apart from studies using amphibians, there have been few direct comparisons of responses to predation and parasitism, and none have incorporated responses to micropredators, parasitoids or parasitic castrators, or examined their long-term consequences. Addressing these and other data gaps highlighted by our framework can advance the field towards understanding how non-lethal effects impact prey/host population dynamics and shape food webs that contain multiple predator and parasite species.

Keywords

Associated Data

Dryad | 10.5061/dryad.fxpnvx0qf
figshare | 10.6084/m9.figshare.c.5298713

References

  1. Nature. 2019 Jun;570(7759):58-64 [PMID: 31168105]
  2. Proc Biol Sci. 2021 Feb 24;288(1945):20202966 [PMID: 33622122]
  3. Ecol Lett. 2009 Sep;12(9):982-98 [PMID: 19614756]
  4. Curr Biol. 2015 Apr 20;25(8):1043-9 [PMID: 25772450]
  5. Philos Trans R Soc Lond B Biol Sci. 2018 Jul 19;373(1751): [PMID: 29866918]
  6. Parasitology. 1994;109 Suppl:S139-51 [PMID: 7854847]
  7. Trends Immunol. 2014 Oct;35(10):457-64 [PMID: 25256957]
  8. Nat Ecol Evol. 2017 Aug;1(8):1123-1128 [PMID: 29046564]
  9. Philos Trans R Soc Lond B Biol Sci. 2018 Jul 19;373(1751): [PMID: 29866917]
  10. Proc Biol Sci. 2013 May 15;280(1762):20130759 [PMID: 23677349]
  11. Nature. 2008 Jul 24;454(7203):515-8 [PMID: 18650923]
  12. Science. 2015 Aug 21;349(6250):854-7 [PMID: 26293960]
  13. Philos Trans R Soc Lond B Biol Sci. 2018 Jul 19;373(1751): [PMID: 29866921]
  14. Annu Rev Entomol. 2019 Jan 7;64:259-276 [PMID: 30312554]
  15. Philos Trans R Soc Lond B Biol Sci. 2009 Jan 12;364(1513):37-49 [PMID: 18926971]
  16. Ecology. 2015 Feb;96(2):489-98 [PMID: 26240870]
  17. Philos Trans R Soc Lond B Biol Sci. 2018 Jul 19;373(1751): [PMID: 29866915]
  18. Trends Parasitol. 2019 Oct;35(10):835-847 [PMID: 31444059]
  19. Science. 2007 Feb 16;315(5814):960 [PMID: 17303746]
  20. J Anim Ecol. 2018 Nov;87(6):1525-1533 [PMID: 30047991]
  21. Ecol Lett. 2018 Apr;21(4):588-604 [PMID: 29446237]
  22. PLoS Biol. 2006 Jul;4(7):e197 [PMID: 16719563]
  23. Science. 2011 Jul 22;333(6041):445-8 [PMID: 21778398]
  24. Nature. 2006 May 25;441(7092):421 [PMID: 16724051]
  25. Trends Ecol Evol. 2017 Sep;32(9):681-694 [PMID: 28736043]
  26. Science. 2018 Mar 16;359(6381):1213-1214 [PMID: 29590062]
  27. Oecologia. 2009 Mar;159(2):447-54 [PMID: 18989706]
  28. Oecologia. 2019 Oct;191(2):325-334 [PMID: 31535255]
  29. Ecology. 2020 Dec;101(12):e03152 [PMID: 32736416]
  30. Trends Parasitol. 2002 Mar;18(3):116-20 [PMID: 11854088]
  31. Ecology. 2007 Oct;88(10):2555-62 [PMID: 18027758]
  32. Ecology. 2006 Aug;87(8):1973-80 [PMID: 16937636]
  33. J Exp Biol. 2013 Jan 1;216(Pt 1):56-66 [PMID: 23225868]
  34. Biol Lett. 2020 Nov;16(11):20200641 [PMID: 33202184]

MeSH Term

Animals
Fear
Food Chain
Humans
Parasites
Population Dynamics
Predatory Behavior

Word Cloud

Created with Highcharts 10.0.0effectsresponsesnon-lethalpredatorsparasitespredationframeworkparasitismdefensivecanalsoquestiontypestowardsparasitoidsparasiticcastratorsamphibiansdatafoodwebsecologyResearch'ecologyfear'positspreyavoidcauseacrossecologicalscalesParasiteselicithostsassociatedraiseslongstandingyetunresolvedcomparedevelopedsystematicallyansweringpredator-preyhost-parasitesystemsrevealslikelydifferencesdifferentTraitstrongestnumerousperhapsfrequentcasestudylarvalwhosetraitrelativelywellstudiedexistingindicateindividualsgenerallyrespondstronglyproactivelyshort-termrisksApartstudiesusingdirectcomparisonsnoneincorporatedmicropredatorsexaminedlong-termconsequencesAddressinggapshighlightedadvancefieldunderstandingimpactprey/hostpopulationdynamicsshapecontainmultiplepredatorparasitespeciesBroadeningfear:arisediversecommunitynaturalenemiesrisksublethaltrait-mediated

Similar Articles

Cited By