Autocrine and paracrine interferon signalling as 'ring vaccination' and 'contact tracing' strategies to suppress virus infection in a host.

G Michael Lavigne, Hayley Russell, Barbara Sherry, Ruian Ke
Author Information
  1. G Michael Lavigne: Department of Mathematics, North Carolina State University, Raleigh, NC 27606, USA.
  2. Hayley Russell: Department of Mathematics, North Carolina State University, Raleigh, NC 27606, USA.
  3. Barbara Sherry: School of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
  4. Ruian Ke: Department of Mathematics, North Carolina State University, Raleigh, NC 27606, USA.

Abstract

The innate immune response, particularly the interferon response, represents a first line of defence against viral infections. The interferon molecules produced from infected cells act through autocrine and paracrine signalling to turn host cells into an antiviral state. Although the molecular mechanisms of IFN signalling have been well characterized, how the interferon response collectively contribute to the regulation of host cells to stop or suppress viral infection during early infection remain unclear. Here, we use mathematical models to delineate the roles of the autocrine and the paracrine signalling, and show that their impacts on viral spread are dependent on how infection proceeds. In particular, we found that when infection is well-mixed, the paracrine signalling is not as effective; by contrast, when infection spreads in a spatial manner, a likely scenario during initial infection in tissue, the paracrine signalling can impede the spread of infection by decreasing the number of susceptible cells close to the site of infection. Furthermore, we argue that the interferon response can be seen as a parallel to population-level epidemic prevention strategies such as 'contact tracing' or 'ring vaccination'. Thus, our results here may have implications for the outbreak control at the population scale more broadly.

Keywords

Associated Data

figshare | 10.6084/m9.figshare.c.5301222

References

  1. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1041-6 [PMID: 19955428]
  2. Proc Natl Acad Sci U S A. 2009 Apr 21;106(16):6872-7 [PMID: 19332788]
  3. Hepatology. 2014 Jun;59(6):2121-30 [PMID: 24122862]
  4. Curr Opin Microbiol. 2016 Aug;32:113-119 [PMID: 27288760]
  5. J Virol. 2011 Mar;85(6):2686-94 [PMID: 21191030]
  6. J R Soc Interface. 2010 Jun 6;7(47):873-85 [PMID: 19892718]
  7. Cell Host Microbe. 2010 Nov 18;8(5):410-21 [PMID: 21075352]
  8. J R Soc Interface. 2006 Oct 22;3(10):699-709 [PMID: 16971338]
  9. Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3455-60 [PMID: 19218453]
  10. PLoS Pathog. 2009 May;5(5):e1000429 [PMID: 19436700]
  11. Sci Signal. 2015 Feb 10;8(363):ra16 [PMID: 25670204]
  12. PLoS Pathog. 2015 Dec 31;11(12):e1005345 [PMID: 26720415]
  13. Viruses. 2018 Nov 13;10(11): [PMID: 30428545]
  14. Curr Opin Microbiol. 2010 Aug;13(4):508-16 [PMID: 20538505]
  15. Proc Biol Sci. 2003 Dec 22;270(1533):2565-71 [PMID: 14728778]
  16. Nat Rev Immunol. 2019 Apr;19(4):205-217 [PMID: 30770905]
  17. Science. 2020 Oct 23;370(6515): [PMID: 32972995]
  18. Nat Microbiol. 2019 Jun;4(6):1006-1013 [PMID: 30833734]
  19. Proc Natl Acad Sci U S A. 2017 Jan 24;114(4):E590-E599 [PMID: 28069935]
  20. PLoS Comput Biol. 2012;8(6):e1002588 [PMID: 22761567]
  21. Science. 2020 Oct 23;370(6515): [PMID: 32972996]
  22. Annu Rev Virol. 2015 Nov;2(1):549-72 [PMID: 26958928]
  23. Cytokine. 2017 Oct;98:4-14 [PMID: 27751656]
  24. J Virol. 2010 Apr;84(8):3974-83 [PMID: 20130053]
  25. Virology. 2016 Sep;496:59-66 [PMID: 27254596]
  26. Front Immunol. 2018 Sep 11;9:2061 [PMID: 30254639]
  27. J Biol Chem. 2010 Mar 12;285(11):7852-6 [PMID: 20093371]
  28. Front Immunol. 2019 Jul 24;10:1736 [PMID: 31396233]
  29. J Mol Biol. 2014 Mar 20;426(6):1246-64 [PMID: 24316048]
  30. J Virol. 2019 Jun 28;93(14): [PMID: 31068418]
  31. Nat Rev Immunol. 2014 Jan;14(1):36-49 [PMID: 24362405]
  32. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  33. Mol Syst Biol. 2012 May 22;8:584 [PMID: 22617958]
  34. Immunol Rev. 2018 Sep;285(1):72-80 [PMID: 30129203]
  35. Proc Natl Acad Sci U S A. 2011 Sep 13;108(37):15384-9 [PMID: 21896767]
  36. J Virol. 2006 Aug;80(15):7590-9 [PMID: 16840338]
  37. J Theor Biol. 2005 Jan 21;232(2):223-34 [PMID: 15530492]
  38. Nat Commun. 2018 Oct 1;9(1):4013 [PMID: 30275474]
  39. Nat Biotechnol. 2010 Feb;28(2):167-71 [PMID: 20118917]
  40. PLoS Comput Biol. 2014 Nov 13;10(11):e1003934 [PMID: 25393308]
  41. Proc Biol Sci. 2009 Sep 22;276(1671):3239-48 [PMID: 19570791]

Grants

  1. R01 AI083333/NIAID NIH HHS
  2. R56 AI083333/NIAID NIH HHS

MeSH Term

Antiviral Agents
Contact Tracing
Humans
Immunity, Innate
Interferons
Vaccination
Virus Diseases

Chemicals

Antiviral Agents
Interferons

Word Cloud

Created with Highcharts 10.0.0infectioninterferonsignallingparacrineresponsecellsviralhostinnateautocrinesuppressspreadcanstrategies'contacttracing''ringvaccination'immuneparticularlyrepresentsfirstlinedefenceinfectionsmoleculesproducedinfectedactturnantiviralstateAlthoughmolecularmechanismsIFNwellcharacterizedcollectivelycontributeregulationstopearlyremainunclearusemathematicalmodelsdelineaterolesshowimpactsdependentproceedsparticularfoundwell-mixedeffectivecontrastspreadsspatialmannerlikelyscenarioinitialtissueimpededecreasingnumbersusceptibleclosesiteFurthermoreargueseenparallelpopulation-levelepidemicpreventionThusresultsmayimplicationsoutbreakcontrolpopulationscalebroadlyAutocrineviruscellularautomataimmunitypartialdifferentialequationsringvaccination

Similar Articles

Cited By