Bacteriophage Treatment Rescues Mice Infected with Multidrug-Resistant Klebsiella pneumoniae ST258.

Shayla Hesse, Natalia Malachowa, Adeline R Porter, Brett Freedman, Scott D Kobayashi, Donald J Gardner, Dana P Scott, Sankar Adhya, Frank R DeLeo
Author Information
  1. Shayla Hesse: Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA shayla.hesse@nih.gov. ORCID
  2. Natalia Malachowa: Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  3. Adeline R Porter: Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  4. Brett Freedman: Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  5. Scott D Kobayashi: Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  6. Donald J Gardner: Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  7. Dana P Scott: Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.
  8. Sankar Adhya: Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.
  9. Frank R DeLeo: Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA.

Abstract

Severe infections caused by multidrug-resistant sequence type 258 (ST258) highlight the need for new therapeutics with activity against this pathogen. Bacteriophage (phage) therapy is an alternative treatment approach for multidrug-resistant bacterial infections that has shown efficacy in experimental animal models and promise in clinical case reports. In this study, we assessed microbiologic, histopathologic, and survival outcomes following systemic administration of phage in ST258-infected mice. We found that prompt treatment with two phages, either individually or in combination, rescued mice with ST258 bacteremia. Among the three treatment groups, mice that received combination phage therapy demonstrated the greatest increase in survival and the lowest frequency of phage resistance among bacteria recovered from mouse blood and tissue. Our findings support the utility of phage therapy as an approach for refractory ST258 infections and underscore the potential of this treatment modality to be enhanced through strategic phage selection. Infections caused by multidrug-resistant pose a serious threat to at-risk patients and present a therapeutic challenge for clinicians. Bacteriophage (phage) therapy is an alternative treatment approach that has been associated with positive clinical outcomes when administered experimentally to patients with refractory bacterial infections. Inasmuch as these experimental treatments are prepared for individual patients and authorized for compassionate use only, they lack the rigor of a clinical trial and therefore cannot provide proof of efficacy. Here, we demonstrate that administration of viable phage provides effective treatment for multidrug-resistant (sequence type 258 [ST258]) bacteremia in a murine infection model. Moreover, we compare outcomes among three distinct phage treatment groups and identify potential correlates of therapeutic phage efficacy. These findings constitute an important first step toward optimizing and assessing phage therapy's potential for the treatment of severe ST258 infection in humans.

Keywords

References

  1. J Antimicrob Chemother. 2002 Jul;50(1):51-8 [PMID: 12096006]
  2. Antimicrob Agents Chemother. 2011 Apr;55(4):1358-65 [PMID: 21245450]
  3. Microb Pathog. 2016 Oct;99:68-77 [PMID: 27498362]
  4. Ann Clin Microbiol Antimicrob. 2017 Mar 29;16(1):18 [PMID: 28356109]
  5. Biomed Res Int. 2015;2015:752930 [PMID: 25879036]
  6. Open Forum Infect Dis. 2018 Mar 23;5(4):ofy064 [PMID: 29687015]
  7. Antibiotics (Basel). 2020 Jul 04;9(7): [PMID: 32635429]
  8. Bacteriophage. 2012 Jul 1;2(3):159-167 [PMID: 23275867]
  9. Arch Intern Med. 2002 May 13;162(9):1021-7 [PMID: 11996612]
  10. Open Forum Infect Dis. 2020 Aug 27;7(9):ofaa389 [PMID: 33005701]
  11. Antimicrob Agents Chemother. 2015 Oct;59(10):5873-84 [PMID: 26169401]
  12. Open Forum Infect Dis. 2017 Jul 01;4(3):ofx101 [PMID: 28685153]
  13. Antimicrob Agents Chemother. 2017 Mar 24;61(4): [PMID: 28115349]
  14. J Microbiol Biotechnol. 2010 May;20(5):935-41 [PMID: 20519918]
  15. Infect Immun. 2016 Nov 18;84(12):3268-3281 [PMID: 27600505]
  16. Lancet Infect Dis. 2020 Jun;20(6):731-741 [PMID: 32151332]
  17. Clin Infect Dis. 2018 Apr 3;66(8):1290-1297 [PMID: 29165604]
  18. mBio. 2020 Jan 28;11(1): [PMID: 31992617]
  19. Front Microbiol. 2020 Jun 04;11:1161 [PMID: 32582101]
  20. Clin Microbiol Rev. 1998 Oct;11(4):589-603 [PMID: 9767057]
  21. Clin Infect Dis. 2016 Dec 15;63(12):1615-1618 [PMID: 27624958]
  22. Antimicrob Agents Chemother. 2017 Nov 22;61(12): [PMID: 29038260]
  23. J Bacteriol. 2017 Sep 19;199(20): [PMID: 28760848]
  24. Antimicrob Agents Chemother. 2013 Dec;57(12):5961-8 [PMID: 24041900]
  25. J Med Microbiol. 2008 Dec;57(Pt 12):1508-1513 [PMID: 19018021]
  26. Curr Pharm Biotechnol. 2010 Jan;11(1):2-14 [PMID: 20214604]
  27. Antimicrob Agents Chemother. 2017 Sep 22;61(10): [PMID: 28807909]
  28. Nat Med. 2019 May;25(5):730-733 [PMID: 31068712]
  29. Sci Transl Med. 2012 Aug 22;4(148):148ra116 [PMID: 22914622]
  30. Clin Infect Dis. 2019 Nov 13;69(11):2015-2018 [PMID: 30869755]
  31. J Infect. 2018 May;76(5):438-448 [PMID: 29477802]
  32. Crit Care Med. 2017 Mar;45(3):486-552 [PMID: 28098591]
  33. Nat Microbiol. 2019 Nov;4(11):1919-1929 [PMID: 31358985]
  34. Am J Transplant. 2019 Sep;19(9):2631-2639 [PMID: 31207123]

Grants

  1. ZIA AI001195/Intramural NIH HHS
  2. ZIA BC010017/Intramural NIH HHS

MeSH Term

Animals
Anti-Bacterial Agents
Bacteremia
Bacteriophages
Drug Resistance, Multiple, Bacterial
Female
Klebsiella Infections
Klebsiella pneumoniae
Mice
Mice, Inbred C57BL
Phage Therapy

Chemicals

Anti-Bacterial Agents

Word Cloud

Created with Highcharts 10.0.0phagetreatmentinfectionsST258therapymultidrug-resistantBacteriophageapproachefficacyexperimentalclinicaloutcomesmicepotentialpatientscausedsequencetype258therapeuticsalternativebacterialsurvivaladministrationcombinationbacteremiathreegroupsresistanceamongfindingsrefractorytherapeuticinfectionKlebsiellapneumoniaeSeverehighlightneednewactivitypathogenshownanimalmodelspromisecasereportsstudyassessedmicrobiologichistopathologicfollowingsystemicST258-infectedfoundprompttwophageseitherindividuallyrescuedAmongreceiveddemonstratedgreatestincreaselowestfrequencybacteriarecoveredmousebloodtissuesupportutilityunderscoremodalityenhancedstrategicselectionInfectionsposeseriousthreatat-riskpresentchallengecliniciansassociatedpositiveadministeredexperimentallyInasmuchtreatmentspreparedindividualauthorizedcompassionateuselackrigortrialthereforeprovideproofdemonstrateviableprovideseffective[ST258]murinemodelMoreovercomparedistinctidentifycorrelatesconstituteimportantfirststeptowardoptimizingassessingtherapy'sseverehumansTreatmentRescuesMiceInfectedMultidrug-Resistantbacteriophagebloodstreammultidrug

Similar Articles

Cited By