Effects of miR-143 and its target receptor 5-HT2B on agonistic behavior in the Chinese mitten crab (Eriocheir sinensis).

Yang-Yang Pang, Gen-Yong Huang, Ya-Meng Song, Xiao- Zhe Song, Jia-Huan Lv, Long He, Chao Niu, Ao-Ya Shi, Xing-Liang Shi, Yong-Xu Cheng, Xiao-Zhen Yang
Author Information
  1. Yang-Yang Pang: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  2. Gen-Yong Huang: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  3. Ya-Meng Song: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  4. Xiao- Zhe Song: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  5. Jia-Huan Lv: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  6. Long He: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  7. Chao Niu: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  8. Ao-Ya Shi: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  9. Xing-Liang Shi: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China.
  10. Yong-Xu Cheng: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China. yxcheng@shou.edu.cn.
  11. Xiao-Zhen Yang: National Demonstration Center for Experimental Fisheries Science Education; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture; Engineering Research Center of Aquaculture, Shanghai Ocean University, No. 999, Huchenghuan Road, Shanghai, 201306, People's Republic of China. xzyang@shou.edu.cn.

Abstract

Chinese mitten crab (Eriocheir sinensis) as a commercially important species is widely cultured in China. However, E. sinensis is prone to agonistic behavior, which causes physical damage and wastes energy resources, negatively impacting their growth and survival. Therefore, understanding the regulatory mechanisms that underlie the switching of such behavior is essential for ensuring the efficient and cost-effective aquaculture of E. sinensis. The 5-HT2B receptor is a key downstream target of serotonin (5-HT), which is involved in regulating animal behavior. In this study, the full-length sequence of 5-HT2B gene was cloned. The total length of the 5-HT2B gene was found to be 3127 bp with a 236 bp 5'-UTR (untranslated region), a 779 bp 3'-UTR, and a 2112 bp open reading frame encoding 703 amino acids. Phylogenetic tree analysis revealed that the 5-HT2B amino acid sequence of E. sinensis is highly conserved with that of Cancer borealis. Using in vitro co-culture and luciferase assays, the miR-143 targets the 5-HT2B 3'-UTR and inhibits 5-HT2B expression was confirmed. Furthermore, RT-qPCR and Western blotting analyses revealed that the miR-143 mimic significantly inhibits 5-HT2B mRNA and protein expression. However, injection of miR-143 did not decrease agonistic behavior, indicating that 5-HT2B is not involved in the regulation of such behavior in E. sinensis.

References

  1. Physiol Behav. 2019 Oct 1;209:112621 [PMID: 31323296]
  2. J Pharm Pharmacol. 2009 Sep;61(9):1249-56 [PMID: 19703376]
  3. Front Behav Neurosci. 2015 Mar 31;9:80 [PMID: 25873872]
  4. Front Physiol. 2018 Mar 21;9:270 [PMID: 29618988]
  5. Int J Dev Neurosci. 2001 Jul;19(4):365-72 [PMID: 11378296]
  6. Mol Psychiatry. 2009 Apr;14(4):381-9 [PMID: 18283276]
  7. J Comp Physiol B. 2014 Feb;184(2):205-19 [PMID: 24370737]
  8. PLoS One. 2016 May 25;11(5):e0156325 [PMID: 27223470]
  9. Eur J Neurosci. 2017 Aug;46(3):1863-1874 [PMID: 28661085]
  10. Elife. 2018 Oct 16;7: [PMID: 30325308]
  11. Fish Shellfish Immunol. 2016 Feb;49:396-406 [PMID: 26766179]
  12. Elife. 2017 Oct 06;6: [PMID: 28984573]
  13. PLoS One. 2013 Sep 18;8(9):e74489 [PMID: 24058575]
  14. Science. 1988 Sep 30;241(4874):1775-81 [PMID: 2902685]
  15. PLoS One. 2012;7(11):e50047 [PMID: 23166815]
  16. Neuropharmacology. 2019 Oct;157:107675 [PMID: 31233824]
  17. J Comp Physiol A. 2001 Dec;187(10):757-67 [PMID: 11800033]
  18. Neuron. 2017 Sep 13;95(6):1319-1333.e5 [PMID: 28867550]
  19. Comp Biochem Physiol A Mol Integr Physiol. 2004 Dec;139(4):495-502 [PMID: 15596395]
  20. Front Cell Infect Microbiol. 2017 May 04;7:164 [PMID: 28523250]
  21. ACS Chem Neurosci. 2019 Nov 20;10(11):4502-4510 [PMID: 31642670]
  22. Eur J Neurosci. 2016 Jul;44(2):1886-95 [PMID: 27086724]
  23. Eur Neuropsychopharmacol. 2020 Mar;32:66-76 [PMID: 31948829]
  24. Proc Natl Acad Sci U S A. 1997 May 27;94(11):5939-42 [PMID: 9159179]
  25. Neuroscience. 2009 Feb 18;158(4):1292-300 [PMID: 19041376]
  26. Mol Pharmacol. 2005 Dec;68(6):1678-87 [PMID: 16131615]
  27. Neuroreport. 2020 Jan 27;31(2):167-173 [PMID: 31789691]
  28. Genes Brain Behav. 2017 Jul;16(6):601-611 [PMID: 28466980]
  29. BMC Genomics. 2018 Dec 14;19(1):933 [PMID: 30547762]
  30. J Cell Physiol. 2018 Sep;233(9):6632-6643 [PMID: 29194604]
  31. Curr Biol. 2019 Jul 8;29(13):2145-2156.e5 [PMID: 31231050]
  32. J Comp Physiol A. 2000 Jun;186(6):575-82 [PMID: 10947240]
  33. In Vitro Cell Dev Biol Anim. 2010 Sep;46(8):708-17 [PMID: 20585894]
  34. Brain Struct Funct. 2017 Sep;222(7):3107-3126 [PMID: 28260163]
  35. J Med Chem. 1996 Jul 19;39(15):2953-61 [PMID: 8709129]
  36. Methods. 2001 Dec;25(4):402-8 [PMID: 11846609]
  37. Biol Pharm Bull. 2019;42(12):2009-2015 [PMID: 31787717]
  38. Peptides. 2019 Jun;116:30-41 [PMID: 31034862]
  39. Front Genet. 2020 Apr 23;11:321 [PMID: 32391050]
  40. Nat Rev Neurosci. 2010 May;11(5):329-38 [PMID: 20354535]
  41. Cell. 2004 Jan 23;116(2):281-97 [PMID: 14744438]
  42. J Exp Biol. 2014 Dec 15;217(Pt 24):4423-31 [PMID: 25452502]
  43. PLoS One. 2018 Mar 19;13(3):e0193999 [PMID: 29554147]
  44. Physiol Behav. 2005 Jan 17;83(5):683-8 [PMID: 15639152]

Grants

  1. CARS-48/China Agriculture Research System
  2. 2019YFD0900105/National Key Research and Development Program of China

MeSH Term

3' Untranslated Regions
5' Untranslated Regions
Agonistic Behavior
Amino Acid Sequence
Animals
Base Sequence
Brachyura
China
Cloning, Molecular
DNA, Complementary
Gene Expression Profiling
MicroRNAs
Open Reading Frames
Phylogeny
RNA, Messenger
Sequence Alignment
Serotonin

Chemicals

3' Untranslated Regions
5' Untranslated Regions
DNA, Complementary
MicroRNAs
RNA, Messenger
Serotonin

Word Cloud

Created with Highcharts 10.0.05-HT2BsinensisbehaviorEmiR-143agonisticChinesemittencrabEriocheirHoweverreceptortargetinvolvedsequencegene3'-UTRaminorevealedinhibitsexpressioncommerciallyimportantspecieswidelyculturedChinapronecausesphysicaldamagewastesenergyresourcesnegativelyimpactinggrowthsurvivalThereforeunderstandingregulatorymechanismsunderlieswitchingessentialensuringefficientcost-effectiveaquaculturekeydownstreamserotonin5-HTregulatinganimalstudyfull-lengthclonedtotallengthfound3127 bp236 bp5'-UTRuntranslatedregion779 bp2112 bpopenreadingframeencoding703acidsPhylogenetictreeanalysisacidhighlyconservedCancerborealisUsingvitroco-cultureluciferaseassaystargetsconfirmedFurthermoreRT-qPCRWesternblottinganalysesmimicsignificantlymRNAproteininjectiondecreaseindicatingregulationEffects

Similar Articles

Cited By