3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator-Metal-Insulator Layered Heterostructures.

Pengbo Zhai, Tianshuai Wang, Huaning Jiang, Jiayu Wan, Yi Wei, Lei Wang, Wei Liu, Qian Chen, Weiwei Yang, Yi Cui, Yongji Gong
Author Information
  1. Pengbo Zhai: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
  2. Tianshuai Wang: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
  3. Huaning Jiang: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
  4. Jiayu Wan: Department of Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA. ORCID
  5. Yi Wei: Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, 100029, China.
  6. Lei Wang: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
  7. Wei Liu: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
  8. Qian Chen: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
  9. Weiwei Yang: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China.
  10. Yi Cui: Department of Material Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
  11. Yongji Gong: School of Materials Science and Engineering, Beihang University, Beijing, 100191, China. ORCID

Abstract

Despite considerable efforts to prevent Lithium (Li) dendrite growth, stable cycling of Li metal anodes with various structures remains extremely difficult due to the direct contact of the liquid electrolyte with Li. Rational design of solid-electrolyte interphase (SEI) for 3D electrodes is a promising but still challenging strategy for preventing Li dendrite growth and avoiding Lithium-electrolyte side reactions in Li-metal batteries. Here, a 3D architecture is constructed with g-C N /graphene/g-C N insulator-metal-insulator sandwiched nanosheets to guide uniform Li plating/stripping in the van der Waals gap between the graphene and the g-C N , and the function of which can be regarded as a 3D artificial SEI. Li deposition on the surface of g-C N is suppressed due to its insulating nature. However, its uniform lithiophilic sites and nanopore channels enable homogeneous Lithium plating between the graphene and the g-C N , prohibiting the direct contact of the electrolyte with the Li metal. The use of the g-C N -layer-modified 3D anode enables long-term Li deposition with a high Coulombic efficiency and stable cycling of full cells under high cathode loading, limited Li excess, and lean electrolyte conditions. The concept of a 3D artificial SEI will shed light on developing safe and stable Li-metal anodes.

Keywords

References

  1. J.-M. Tarascon, M. Armand, Nature 2001, 414, 359.
  2. J. B. Goodenough, K.-S. Park, J. Am. Chem. Soc. 2013, 135, 1167.
  3. J. Liu, Z. N. Bao, Y. Cui, E. J. Dufek, J. B. Goodenough, P. Khalifah, Q. Y. Li, B. Y. Liaw, P. Liu, A. Manthiram, Y. S. Meng, V. R. Subramanian, M. F. Toney, V. V. Viswanathan, M. S. Whittingham, J. Xiao, W. Xu, J. H. Yang, X. Q. Yang, J. G. Zhang, Nat. Energy 2019, 4, 180.
  4. X. B. Cheng, R. Zhang, C. Z. Zhao, Q. Zhang, Chem. Rev. 2017, 117, 10403.
  5. D. Lin, Y. Liu, Y. Cui, Nat. Nanotechnol. 2017, 12, 194.
  6. Y. Li, Y. Li, A. Pei, K. Yan, Y. Sun, C.-L. Wu, L.-M. Joubert, R. Chin, A. L. Koh, Y. Yu, J. Perrino, B. Butz, S. Chu, Y. Cui, Science 2017, 358, 506.
  7. M. J. Zachman, Z. Tu, S. Choudhury, L. A. Archer, L. F. Kourkoutis, Nature 2018, 560, 345.
  8. R. L. Sacci, N. J. Dudney, K. L. More, L. R. Parent, I. Arslan, N. D. Browning, R. R. Unocic, Chem. Commun. 2014, 50, 2104.
  9. C. Fang, J. Li, M. Zhang, Y. Zhang, F. Yang, J. Z. Lee, M.-H. Lee, J. Alvarado, M. A. Schroeder, Y. Yang, B. Lu, N. Williams, M. Ceja, L. Yang, M. Cai, J. Gu, K. Xu, X. Wang, Y. S. Meng, Nature 2019, 572, 511.
  10. W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang, J.-G. Zhang, Energy Environ. Sci. 2014, 7, 513.
  11. M. D. Tikekar, S. Choudhury, Z. Tu, L. A. Archer, Nat. Energy 2016, 1, 16114.
  12. J. Zheng, M. H. Engelhard, D. Mei, S. Jiao, B. J. Polzin, J.-G. Zhang, W. Xu, Nat. Energy 2017, 2, 17012.
  13. C.-C. Su, M. He, R. Amine, T. Rojas, L. Cheng, A. T. Ngo, K. Amine, Energy Environ. Sci. 2019, 12, 1249.
  14. W. Zhang, H. L. Zhuang, L. Fan, L. Gao, Y. Lu, Sci. Adv. 2018, 4, eaar4410.
  15. J. Chen, X. Fan, Q. Li, H. Yang, M. R. Khoshi, Y. Xu, S. Hwang, L. Chen, X. Ji, C. Yang, H. He, C. Wang, E. Garfunkel, D. Su, O. Borodin, C. Wang, Nat. Energy 2020, 5, 386.
  16. H. Zhang, G. G. Eshetu, X. Judez, C. Li, L. M. Rodriguez-Martínez, M. Armand, Angew. Chem., Int. Ed. 2018, 57, 15002.
  17. Z. Tu, S. Choudhury, M. J. Zachman, S. Wei, K. Zhang, L. F. Kourkoutis, L. A. Archer, Nat. Energy 2018, 3, 310.
  18. X. Liang, Q. Pang, I. R. Kochetkov, M. S. Sempere, H. Huang, X. Q. Sun, L. F. Nazar, Nat. Energy 2017, 2, 17119.
  19. W. Tang, X. Yin, S. Kang, Z. Chen, B. Tian, S. L. Teo, X. Wang, X. Chi, K. P. Loh, H. W. Lee, G. W. Zheng, Adv. Mater. 2018, 30, 1801745.
  20. K. Chen, R. Pathak, A. Gurung, E. A. Adhamash, B. Bahrami, Q. He, H. Qiao, A. L. Smirnova, J. J. Wu, Q. Qiao, Y. Zhou, Energy Storage Mater. 2019, 18, 389.
  21. E. Cha, M. D. Patel, J. Park, J. Hwang, V. Prasad, K. Cho, W. Choi, Nat. Nanotechnol. 2018, 13, 337.
  22. W. Liu, Y. Xia, W. Wang, Y. Wang, J. Jin, Y. Chen, E. Paek, D. Mitlin, Adv. Energy Mater. 2019, 9, 1802918.
  23. K. Yan, H.-W. Lee, T. Gao, G. Zheng, H. Yao, H. Wang, Z. Lu, Y. Zhou, Z. Liang, Z. Liu, S. Chu, Y. Cui, Nano Lett. 2014, 14, 6016.
  24. Y. Kim, D. Koo, S. Ha, S. C. Jung, T. Yim, H. Kim, S. K. Oh, D.-M. Kim, A. Choi, Y. Kang, K. H. Ryu, M. Jang, Y.-K. Han, S. M. Oh, K. T. Lee, ACS Nano 2018, 12, 4419.
  25. Y. Guo, P. Niu, Y. Liu, Y. Ouyang, D. Li, T. Zhai, H. Li, Y. Cui, Adv. Mater. 2019, 31, 1900342.
  26. Y. Gao, Z. Yan, J. L. Gray, X. He, D. Wang, T. Chen, Q. Huang, Y. C. Li, H. Wang, S. H. Kim, T. E. Mallouk, D. Wang, Nat. Mater. 2019, 18, 384.
  27. R. Xu, X.-Q. Zhang, X.-B. Cheng, H.-J. Peng, C.-Z. Zhao, C. Yan, J.-Q. Huang, Adv. Funct. Mater. 2018, 28, 1705838.
  28. Y. Sun, Y. Zhao, J. Wang, J. Liang, C. Wang, Q. Sun, X. Lin, K. R. Adair, J. Luo, D. Wang, R. Li, M. Cai, T.-K. Sham, X. Sun, Adv. Mater. 2019, 31, 1806541.
  29. X. Han, Y. Gong, K. Fu, X. He, G. T. Hitz, J. Dai, A. Pearse, B. Liu, H. Wang, G. Rubloff, Y. Mo, V. Thangadurai, E. D. Wachsman, L. Hu, Nat. Mater. 2016, 16, 572.
  30. X. Li, J. Liang, J. Luo, C. Wang, X. Li, Q. Sun, R. Li, L. Zhang, R. Yang, S. Lu, H. Huang, X. Sun, Adv. Mater. 2019, 31, 1808100.
  31. J. Fu, P. Yu, N. Zhang, G. Ren, S. Zheng, W. Huang, X. Long, H. Li, X. Liu, Energy Environ. Sci. 2019, 12, 1404.
  32. S. Ye, L. Wang, F. Liu, P. Shi, H. Wang, X. Wu, Y. Yu, Adv. Energy Mater. 2020, 10, 2002647.
  33. X. Shen, R. Zhang, X. Chen, X. B. Cheng, X. Li, Q. Zhang, Adv. Energy Mater. 2020, 10, 1903645.
  34. F. Sun, D. Zhou, X. He, M. Osenberg, K. Dong, L. Chen, S. Mei, A. Hilger, H. Markötter, Y. Lu, S. Dong, S. Marathe, C. Rau, X. Hou, J. Li, M. C. Stan, M. Winter, R. Dominko, I. Manke, ACS Energy Lett. 2019, 5, 152.
  35. C. Niu, H. Pan, W. Xu, J. Xiao, J.-G. Zhang, L. Luo, C. Wang, D. Mei, J. Meng, X. Wang, Z. Liu, L. Mai, J. Liu, Nat. Nanotechnol. 2019, 14, 594.
  36. Y. Zhang, C. Wang, G. Pastel, Y. Kuang, H. Xie, Y. Li, B. Liu, W. Luo, C. Chen, L. Hu, Adv. Energy Mater. 2018, 8, 1800635.
  37. Y. Xu, T. Li, L. Wang, Y. Kang, Adv. Mater. 2019, 31, 1901662.
  38. H. Shi, M. Yue, C. J. Zhang, Y. Dong, P. Lu, S. Zheng, H. Huang, J. Chen, P. Wen, Z. Xu, Q. Zheng, X. Li, Y. Yu, Z.-S. Wu, ACS Nano 2020, 14, 8678.
  39. C. P. Yang, Y. X. Yin, S. F. Zhang, N. W. Li, Y. G. Guo, Nat. Commun. 2015, 6, 8058.
  40. Q. Yun, Y. B. He, W. Lv, Y. Zhao, B. Li, F. Kang, Q. H. Yang, Adv. Mater. 2016, 28, 6932.
  41. G. Li, Z. Liu, Q. Huang, Y. Gao, M. Regula, D. Wang, L.-Q. Chen, D. Wang, Nat. Energy 2018, 3, 1076.
  42. Y. Liu, D. Lin, Z. Liang, J. Zhao, K. Yan, Y. Cui, Nat. Commun. 2016, 7, 10992.
  43. R. Pathak, Y. Zhou, Q. Qiao, Appl. Sci. 2020, 10, 4185.
  44. B. Yu, T. Tao, S. Mateti, S. Lu, Y. Chen, Adv. Funct. Mater. 2018, 28, 1803023.
  45. G. Zheng, S. W. Lee, Z. Liang, H.-W. Lee, K. Yan, H. Yao, H. Wang, W. Li, S. Chu, Y. Cui, Nat. Nanotechnol. 2014, 9, 618.
  46. R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, F. Wu, A. Chaudhary, N. Ghimire, B. Zhou, W. H. Zhang, Y. Zhou, Q. Qiao, Adv. Energy Mater. 2019, 9, 1901486.
  47. J. Jiang, L. Ou-yang, L. Zhu, A. Zheng, J. Zou, X. Yi, H. Tang, Carbon 2014, 80, 213.
  48. Z. Liu, L. Song, S. Zhao, J. Huang, L. Ma, J. Zhang, J. Lou, P. M. Ajayan, Nano Lett. 2011, 11, 2032.
  49. J. Song, Z. Yu, M. L. Gordin, D. Wang, Nano Lett. 2016, 16, 864.
  50. R. Pathak, K. Chen, A. Gurung, K. M. Reza, B. Bahrami, J. Pokharel, A. Baniya, W. He, F. Wu, Y. Zhou, K. Xu, Q. Qiao, Nat. Commun. 2020, 11, 93.

Grants

  1. 2018YFA0306900/National Key Technologies R&D Program of China
  2. 2018YFA0305800/National Key Technologies R&D Program of China
  3. 51872012/National Natural Science Foundation of China

Word Cloud

Created with Highcharts 10.0.0Li3DNg-CSEIstablemetalelectrolyteartificialdepositionlithiumdendritegrowthcyclinganodesduedirectcontactLi-metalbatteriesuniformvanderWaalsgapgraphenehighDespiteconsiderableeffortspreventvariousstructuresremainsextremelydifficultliquidRationaldesignsolid-electrolyteinterphaseelectrodespromisingstillchallengingstrategypreventingavoidinglithium-electrolytesidereactionsarchitectureconstructed/graphene/g-Cinsulator-metal-insulatorsandwichednanosheetsguideplating/strippingfunctioncanregardedsurfacesuppressedinsulatingnatureHoweverlithiophilicsitesnanoporechannelsenablehomogeneousplatingprohibitinguse-layer-modifiedanodeenableslong-termCoulombicefficiencyfullcellscathodeloadinglimitedexcessleanconditionsconceptwillshedlightdevelopingsafeArtificialSolid-ElectrolyteInterphaseLithiumMetalAnodesEnabledInsulator-Metal-InsulatorLayeredHeterostructuresconfineddendrite-free

Similar Articles

Cited By (9)