Modulating the Biomechanical Properties of Engineered Connective Tissues by Chitosan-Coated Multiwall Carbon Nanotubes.

Naim Kittana, Mohyeddin Assali, Wolfram-Hubertus Zimmermann, Norman Liaw, Gabriela Leao Santos, Abdul Rehman, Susanne Lutz
Author Information
  1. Naim Kittana: Department of Biomedical Sciences, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine. ORCID
  2. Mohyeddin Assali: Department of Pharmacy, Faculty of Medicine & Health Sciences, An-Najah National University, Nablus, Palestine. ORCID
  3. Wolfram-Hubertus Zimmermann: Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany. ORCID
  4. Norman Liaw: Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany. ORCID
  5. Gabriela Leao Santos: Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany. ORCID
  6. Abdul Rehman: Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany.
  7. Susanne Lutz: Institute of Pharmacology and Toxicology, University Medical Center Göttingen, Göttingen, Germany. ORCID

Abstract

BACKGROUND: Under certain conditions, the physiological repair of connective tissues might fail to restore the original structure and function. Optimized engineered connective tissues (ECTs) with biophysical properties adapted to the target tissue could be used as a substitution therapy. This study aimed to investigate the effect of ECT enforcement by a complex of multiwall carbon nanotubes with chitosan (C-MWCNT) to meet in vivo demands.
MATERIALS AND METHODS: ECTs were constructed from human foreskin fibroblasts (HFF-1) in collagen type I and enriched with the three different percentages 0.025, 0.05 and 0.1% of C-MWCNT. Characterization of the physical properties was performed by biomechanical studies using unidirectional strain.
RESULTS: Supplementation with 0.025% C-MWCNT moderately increased the tissue stiffness, reflected by Young's modulus, compared to tissues without C-MWCNT. Supplementation of ECTs with 0.1% C-MWCNT reduced tissue contraction and increased the elasticity and the extensibility, reflected by the yield point and ultimate strain, respectively. Consequently, the ECTs with 0.1% C-MWCNT showed a higher resilience and toughness as control tissues. Fluorescence tissue imaging demonstrated the longitudinal alignment of all cells independent of the condition.
CONCLUSION: Supplementation with C-MWCNT can enhance the biophysical properties of ECTs, which could be advantageous for applications in connective tissue repair.

Keywords

References

  1. Proc Natl Acad Sci U S A. 2010 Apr 27;107(17):7757-62 [PMID: 20385838]
  2. Med Mycol. 2010 Dec;48(8):1018-23 [PMID: 20482450]
  3. Biomacromolecules. 2005 Nov-Dec;6(6):3067-72 [PMID: 16283728]
  4. Cardiovasc Res. 2019 Feb 1;115(2):315-327 [PMID: 30016401]
  5. Adv Healthc Mater. 2017 Jun;6(11): [PMID: 28498548]
  6. Arch Toxicol. 2018 Nov;92(11):3291-3305 [PMID: 30229330]
  7. Int J Nanomedicine. 2017 Apr 13;12:3109-3120 [PMID: 28450785]
  8. Sci Adv. 2018 Jan 17;4(1):eaao4881 [PMID: 29349300]
  9. Mater Sci Eng C Mater Biol Appl. 2015 Apr;49:281-289 [PMID: 25686951]
  10. Interface Focus. 2016 Feb 6;6(1):20150095 [PMID: 26855763]
  11. Small. 2015 Jan 27;11(4):446-55 [PMID: 25255886]
  12. J Zhejiang Univ Sci B. 2010 Jul;11(7):524-30 [PMID: 20593518]
  13. Macromol Biosci. 2017 Apr;17(4): [PMID: 27892655]
  14. J Biomed Mater Res A. 2015 Oct;103(10):3212-25 [PMID: 25788440]
  15. J Biomed Mater Res A. 2014 Aug;102(8):2704-12 [PMID: 24108584]
  16. Nat Commun. 2015 Mar 27;6:6649 [PMID: 25812485]
  17. Molecules. 2019 Jul 26;24(15): [PMID: 31357389]
  18. Chemphyschem. 2001 Feb 16;2(2):78-105 [PMID: 23696434]
  19. Biomaterials. 2003 Nov;24(26):4833-41 [PMID: 14530080]
  20. Ann Biomed Eng. 2006 Nov;34(11):1678-90 [PMID: 17033741]
  21. Int J Biol Macromol. 2016 Apr;85:467-75 [PMID: 26780706]
  22. Methods Mol Biol. 2014;1181:167-76 [PMID: 25070336]
  23. Cardiovasc Pathol. 2014 Nov-Dec;23(6):335-43 [PMID: 25060386]
  24. Chem Res Toxicol. 2011 Dec 19;24(12):2237-48 [PMID: 22081859]
  25. Cardiovasc Res. 2014 Mar 1;101(3):411-22 [PMID: 24368833]
  26. Hum Exp Toxicol. 2015 May;34(5):548-56 [PMID: 25233896]
  27. Proc Natl Acad Sci U S A. 2015 Nov 24;112(47):14452-9 [PMID: 26598661]
  28. Adv Exp Med Biol. 2014;802:31-47 [PMID: 24443019]
  29. Biophys J. 2000 Nov;79(5):2353-68 [PMID: 11053115]
  30. Plast Reconstr Surg. 2014 Oct;134(4):699-712 [PMID: 25357030]
  31. Exp Dermatol. 2010 Aug;19(8):697-706 [PMID: 20545761]
  32. Int J Nanomedicine. 2018 Nov 08;13:7195-7206 [PMID: 30510412]
  33. Experientia. 1971 May 15;27(5):549-50 [PMID: 5132594]
  34. J Biomed Mater Res A. 2014 Mar;102(3):828-41 [PMID: 23554154]
  35. F1000Res. 2016 Apr 26;5: [PMID: 27158462]
  36. Clin Transl Sci. 2020 May;13(3):440-450 [PMID: 31981408]
  37. J Adv Res. 2020 Apr 22;24:191-203 [PMID: 32368357]
  38. Science. 2002 Aug 2;297(5582):787-92 [PMID: 12161643]
  39. J Cell Biol. 1997 Jun 16;137(6):1445-57 [PMID: 9182674]
  40. ACS Biomater Sci Eng. 2019 Jan 14;5(1):294-307 [PMID: 33405875]
  41. Lab Invest. 1988 Feb;58(2):150-6 [PMID: 2448546]
  42. J Mech Behav Biomed Mater. 2015 Dec;52:1-13 [PMID: 25153614]
  43. Int J Mol Sci. 2019 Nov 24;20(23): [PMID: 31771245]
  44. J Mater Sci Mater Med. 2013 Dec;24(12):2889-96 [PMID: 23979364]
  45. Pharmacol Rev. 2013 Jul 01;65(3):1091-133 [PMID: 23818131]
  46. Dermatol Surg. 2009 Feb;35(2):171-81 [PMID: 19215252]
  47. J Am Col Certif Wound Spec. 2011 Aug 01;2(3):50-4 [PMID: 24527149]
  48. ACS Appl Mater Interfaces. 2018 Apr 18;10(15):12441-12452 [PMID: 29589895]
  49. Acta Biomater. 2008 Nov;4(6):1583-92 [PMID: 18706876]
  50. J Mol Cell Cardiol. 2015 Nov;88:39-54 [PMID: 26392029]
  51. J Nanobiotechnology. 2019 Feb 23;17(1):32 [PMID: 30797235]
  52. Cell Motil Cytoskeleton. 2005 Jan;60(1):24-34 [PMID: 15573414]
  53. J Mol Cell Cardiol. 2019 Sep;134:13-28 [PMID: 31233754]
  54. Phys Rev Lett. 2000 Jun 12;84(24):5552-5 [PMID: 10990992]
  55. Philos Trans R Soc Lond B Biol Sci. 2002 Feb 28;357(1418):191-7 [PMID: 11911776]
  56. J Neural Eng. 2010 Dec;7(6):066002 [PMID: 20966538]
  57. Sci Am. 2000 Dec;283(6):62-9 [PMID: 11103460]
  58. Plast Reconstr Surg Glob Open. 2015 Feb 06;3(1):e284 [PMID: 25674365]
  59. Arch Histol Cytol. 2002 Jun;65(2):109-26 [PMID: 12164335]
  60. Wound Repair Regen. 2016 Jul;24(4):630-43 [PMID: 27102877]
  61. Cell Tissue Res. 1981;220(2):325-35 [PMID: 7197588]
  62. Burns. 1996 Sep;22(6):443-6 [PMID: 8884002]
  63. PLoS One. 2015 Oct 08;10(10):e0137519 [PMID: 26448568]
  64. Nanoscale. 2013 May 7;5(9):3547-69 [PMID: 23532468]
  65. Prog Biophys Mol Biol. 2019 Jul;144:51-60 [PMID: 30553553]
  66. Am J Physiol Heart Circ Physiol. 2014 Apr 15;306(8):H1246-52 [PMID: 24531807]
  67. Adv Biochem Eng Biotechnol. 2009;112:81-93 [PMID: 19290498]
  68. ACS Biomater Sci Eng. 2020 Jan 13;6(1):575-586 [PMID: 33463242]
  69. Plast Reconstr Surg Glob Open. 2015 Aug 10;3(7):e471 [PMID: 26301160]

MeSH Term

Animals
Biomechanical Phenomena
Cattle
Cell Line
Chitosan
Connective Tissue
Elastic Modulus
Fibroblasts
Humans
Nanotubes, Carbon
Tissue Engineering

Chemicals

Nanotubes, Carbon
Chitosan

Word Cloud

Created with Highcharts 10.0.0tissueC-MWCNT0ECTsconnectivetissuesproperties1%SupplementationrepairengineeredbiophysicalmultiwallcarbonnanotubeschitosanstrainincreasedreflectedBACKGROUND:certainconditionsphysiologicalmightfailrestoreoriginalstructurefunctionOptimizedadaptedtargetusedsubstitutiontherapystudyaimedinvestigateeffectECTenforcementcomplexmeetvivodemandsMATERIALSANDMETHODS:constructedhumanforeskinfibroblastsHFF-1collagentypeenrichedthreedifferentpercentages02505CharacterizationphysicalperformedbiomechanicalstudiesusingunidirectionalRESULTS:025%moderatelystiffnessYoung'smoduluscomparedwithoutreducedcontractionelasticityextensibilityyieldpointultimaterespectivelyConsequentlyshowedhigherresiliencetoughnesscontrolFluorescenceimagingdemonstratedlongitudinalalignmentcellsindependentconditionCONCLUSION:canenhanceadvantageousapplicationsModulatingBiomechanicalPropertiesEngineeredConnectiveTissuesChitosan-CoatedMultiwallCarbonNanotubescollagen-basedscaffoldmechanical

Similar Articles

Cited By (3)