Potential of Therapeutic Bacteriophages in Nosocomial Infection Management.

Nannan Wu, Tongyu Zhu
Author Information
  1. Nannan Wu: Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
  2. Tongyu Zhu: Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.

Abstract

Nosocomial infections (NIs) are hospital-acquired infections which pose a high healthcare burden worldwide. The impact of NIs is further aggravated by the global spread of antimicrobial resistance (AMR). Conventional treatment and disinfection agents are often insufficient to catch up with the increasing AMR and tolerance of the pathogenic bacteria. This has resulted in a need for alternative approaches and raised new interest in therapeutic bacteriophages (phages). In contrast to the limited clinical options available against AMR bacteria, the extreme abundance and biodiversity of phages in nature provides an opportunity to establish an ever-expanding phage library that collectively provides sustained broad-spectrum and poly microbial coverage. Given the specificity of phage-host interactions, phage susceptibility testing can serve as a rapid and cost-effective method for bacterial subtyping. The library can also provide a database for routine monitoring of nosocomial infections as a prelude to preparing ready-to-use phages for patient treatment and environmental sterilization. Despite the remaining obstacles for clinical application of phages, the establishment of phage libraries, pre-stocked phage vials prepared to good manufacturing practice (GMP) standards, and pre-optimized phage screening technology will facilitate efforts to make phages available as modern medicine. This may provide the breakthrough needed to demonstrate the great potential in nosocomial infection management.

Keywords

References

  1. Adv Colloid Interface Sci. 2017 Nov;249:100-133 [PMID: 28688779]
  2. Pharm Res. 2011 Apr;28(4):934-7 [PMID: 21063753]
  3. Front Microbiol. 2019 Jul 24;10:1711 [PMID: 31396199]
  4. Int J Dermatol. 2002 Jul;41(7):453-8 [PMID: 12121566]
  5. J Clin Microbiol. 2007 Feb;45(2):536-43 [PMID: 17151203]
  6. PLoS One. 2016 Dec 16;11(12):e0168380 [PMID: 27992494]
  7. J Infect Dis. 2008 Apr 15;197(8):1079-81 [PMID: 18419525]
  8. Clin Infect Dis. 2019 Nov 13;69(11):2015-2018 [PMID: 30869755]
  9. CA Cancer J Clin. 2018 Sep;68(5):340-355 [PMID: 29985544]
  10. J Clin Microbiol. 2003 Sep;41(9):4279-84 [PMID: 12958257]
  11. Annu Rev Microbiol. 2019 Sep 8;73:155-174 [PMID: 31185183]
  12. Res Microbiol. 2018 Nov;169(9):540-542 [PMID: 29777836]
  13. Genome Biol Evol. 2015 May 27;7(7):1842-55 [PMID: 26019165]
  14. Nat Med. 2020 Jun;26(6):941-951 [PMID: 32514171]
  15. Evol Med Public Health. 2018 Mar 08;2018(1):60-66 [PMID: 29588855]
  16. Lancet Infect Dis. 2013 Dec;13(12):1057-98 [PMID: 24252483]
  17. Antimicrob Agents Chemother. 2019 Dec 20;64(1): [PMID: 31611357]
  18. Am J Infect Control. 2019 Jun;47S:A72-A78 [PMID: 31146855]
  19. Animals (Basel). 2020 May 18;10(5): [PMID: 32443410]
  20. PLoS Curr. 2015 Sep 11;7: [PMID: 26468422]
  21. J Am Coll Nutr. 2019 Jan;38(1):68-75 [PMID: 30157383]
  22. Front Microbiol. 2020 Jun 05;11:1056 [PMID: 32582061]
  23. Acc Chem Res. 2019 Apr 16;52(4):849-857 [PMID: 30925037]
  24. Int J Food Microbiol. 2013 May 15;163(2-3):193-203 [PMID: 23562696]
  25. Clin Ther. 2020 Sep;42(9):1659-1680 [PMID: 32883528]
  26. Am J Respir Crit Care Med. 2019 Nov 1;200(9):1179-1181 [PMID: 31437402]
  27. Environ Microbiol. 2017 Jan;19(1):237-250 [PMID: 27750388]
  28. Cell Host Microbe. 2019 Feb 13;25(2):219-232 [PMID: 30763536]
  29. Lancet Infect Dis. 2019 Apr;19(4):410-418 [PMID: 30858014]
  30. Front Microbiol. 2015 Nov 13;6:1271 [PMID: 26617601]
  31. Microb Biotechnol. 2019 Jul;12(4):742-751 [PMID: 31025530]
  32. Front Microbiol. 2017 Dec 22;8:2587 [PMID: 29312260]
  33. N Engl J Med. 2020 Apr 2;382(14):1372-1374 [PMID: 32242366]
  34. Nat Microbiol. 2020 Mar;5(3):465-472 [PMID: 32066959]
  35. Curr Opin Biotechnol. 2020 Nov 8;68:60-71 [PMID: 33176252]
  36. FEMS Microbiol Rev. 2020 Nov 24;44(6):684-700 [PMID: 32472938]
  37. PLoS One. 2015 Jul 01;10(7):e0131714 [PMID: 26131892]
  38. Front Med (Lausanne). 2020 Jul 31;7:342 [PMID: 32850878]
  39. Clin Chim Acta. 2017 Oct;473:180-185 [PMID: 28866114]
  40. Lancet Infect Dis. 2020 Sep 16;: [PMID: 32949500]
  41. Food Microbiol. 2019 Dec;84:103237 [PMID: 31421774]
  42. Emerg Microbes Infect. 2020 Dec;9(1):771-774 [PMID: 32212918]
  43. Lancet. 2011 Jan 15;377(9761):228-41 [PMID: 21146207]
  44. Clin Microbiol Rev. 2017 Oct;30(4):1015-1063 [PMID: 28855266]
  45. Antibiotics (Basel). 2020 May 21;9(5): [PMID: 32455557]
  46. Crit Rev Biotechnol. 2020 Dec;40(8):1081-1097 [PMID: 32811194]
  47. Methods Mol Biol. 2018;1693:75-84 [PMID: 29119433]
  48. Transpl Infect Dis. 2021 Feb;23(1):e13391 [PMID: 32599666]
  49. Clin Otolaryngol. 2009 Aug;34(4):349-57 [PMID: 19673983]
  50. Microbiol Mol Biol Rev. 2019 Oct 30;83(4): [PMID: 31666296]
  51. Methods Mol Biol. 2018;1693:99-110 [PMID: 29119435]
  52. Curr Pharm Biotechnol. 2010 Jan;11(1):2-14 [PMID: 20214604]
  53. Clin Microbiol Infect. 2010 Jul;16(7):921-6 [PMID: 19912266]
  54. J Antimicrob Chemother. 2018 Oct 1;73(10):2901-2903 [PMID: 30060002]
  55. Antimicrob Agents Chemother. 2017 Sep 22;61(10): [PMID: 28807909]
  56. Methods Mol Biol. 2019;1946:17-22 [PMID: 30798540]
  57. Nat Med. 2019 May;25(5):730-733 [PMID: 31068712]
  58. Lancet Infect Dis. 2019 Jan;19(1):35-45 [PMID: 30292481]
  59. Microorganisms. 2019 Aug 03;7(8): [PMID: 31382591]
  60. Environ Microbiol. 2018 Sep;20(9):3278-3293 [PMID: 30051571]
  61. Water Res. 2019 Nov 15;165:114976 [PMID: 31445306]
  62. Am J Transplant. 2019 Sep;19(9):2631-2639 [PMID: 31207123]
  63. Front Microbiol. 2020 Nov 12;11:549084 [PMID: 33281754]

Word Cloud

Created with Highcharts 10.0.0phagephagesinfectionsAMRlibrarynosocomialNosocomialNIsantimicrobialresistancetreatmentdisinfectionbacteriaclinicalavailableprovidescanprovidehospital-acquiredposehighhealthcareburdenworldwideimpactaggravatedglobalspreadConventionalagentsofteninsufficientcatchincreasingtolerancepathogenicresultedneedalternativeapproachesraisednewinteresttherapeuticbacteriophagescontrastlimitedoptionsextremeabundancebiodiversitynatureopportunityestablishever-expandingcollectivelysustainedbroad-spectrumpolymicrobialcoverageGivenspecificityphage-hostinteractionssusceptibilitytestingserverapidcost-effectivemethodbacterialsubtypingalsodatabaseroutinemonitoringpreludepreparingready-to-usepatientenvironmentalsterilizationDespiteremainingobstaclesapplicationestablishmentlibrariespre-stockedvialspreparedgoodmanufacturingpracticeGMPstandardspre-optimizedscreeningtechnologywillfacilitateeffortsmakemodernmedicinemaybreakthroughneededdemonstrategreatpotentialinfectionmanagementPotentialTherapeuticBacteriophagesInfectionManagementtherapy

Similar Articles

Cited By