A unified alternative telomere-lengthening pathway in yeast survivor cells.

Zachary W Kockler, Josep M Comeron, Anna Malkova
Author Information
  1. Zachary W Kockler: Department of Biology, University of Iowa, Iowa City, IA 52245, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52245, USA.
  2. Josep M Comeron: Department of Biology, University of Iowa, Iowa City, IA 52245, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52245, USA. Electronic address: josep-comeron@uiowa.edu.
  3. Anna Malkova: Department of Biology, University of Iowa, Iowa City, IA 52245, USA; Interdisciplinary Graduate Program in Genetics, University of Iowa, Iowa City, IA 52245, USA. Electronic address: anna-malkova@uiowa.edu.

Abstract

Alternative lengthening of telomeres (ALT) is a recombination process that maintains telomeres in the absence of telomerase and helps cancer cells to survive. yeast has been used as a robust model of ALT; however, the inability to determine the frequency and structure of ALT survivors hinders understanding of the ALT mechanism. Here, using population and molecular genetics approaches, we overcome these problems and demonstrate that contrary to the current view, both RAD51-dependent and RAD51-independent mechanisms are required for a unified ALT survivor pathway. This conclusion is based on the calculation of ALT frequencies, as well as on ultra-long sequencing of ALT products that revealed hybrid sequences containing features attributed to both recombination pathways. Sequencing of ALT intermediates demonstrates that recombination begins with RAD51-mediated strand invasion to form DNA substrates that are matured by a RAD51-independent ssDNA annealing pathway. A similar unified ALT pathway may operate in other organisms, including humans.

Keywords

References

  1. EMBO J. 1999 Jun 15;18(12):3509-19 [PMID: 10369690]
  2. Genetics. 1999 May;152(1):143-52 [PMID: 10224249]
  3. Chromosoma. 2012 Apr;121(2):117-30 [PMID: 22203190]
  4. Mol Cell. 2002 Aug;10(2):373-85 [PMID: 12191482]
  5. Nat Cell Biol. 2006 Jul;8(7):741-7 [PMID: 16767083]
  6. Nat Commun. 2017 Nov 27;8(1):1790 [PMID: 29176630]
  7. Nature. 1984 Jul 12-18;310(5973):154-7 [PMID: 6330571]
  8. Cell. 2012 Feb 17;148(4):651-63 [PMID: 22341440]
  9. Methods Enzymol. 2018;601:161-203 [PMID: 29523232]
  10. PLoS Genet. 2013;9(1):e1003208 [PMID: 23390378]
  11. PLoS Genet. 2014 Nov 06;10(11):e1004736 [PMID: 25375789]
  12. Genetics. 1990 Mar;124(3):533-45 [PMID: 2179052]
  13. Curr Biol. 2001 Jan 23;11(2):125-9 [PMID: 11231130]
  14. Genes Dev. 1995 Aug 1;9(15):1922-32 [PMID: 7649475]
  15. Nat Struct Mol Biol. 2011 Apr;18(4):451-6 [PMID: 21441915]
  16. FEMS Yeast Res. 2017 Mar 1;17(2): [PMID: 28011904]
  17. Mol Biol Evol. 2018 Jun 1;35(6):1547-1549 [PMID: 29722887]
  18. Mol Cell Biol. 2004 Dec;24(24):10857-67 [PMID: 15572688]
  19. Genetics. 2012 Aug;191(4):1073-105 [PMID: 22879408]
  20. Cell. 1993 Apr 23;73(2):347-60 [PMID: 8477448]
  21. Mol Cell Biol. 1999 Dec;19(12):8083-93 [PMID: 10567534]
  22. Cell. 2004 Apr 30;117(3):323-35 [PMID: 15109493]
  23. Yeast. 1994 Dec;10(13):1793-808 [PMID: 7747518]
  24. Mol Cell. 2014 Aug 21;55(4):615-25 [PMID: 25066232]
  25. Nucleic Acids Res. 2002 Mar 15;30(6):e23 [PMID: 11884642]
  26. EMBO J. 2001 Feb 15;20(4):905-13 [PMID: 11179234]
  27. Mol Cell. 2000 Oct;6(4):947-52 [PMID: 11090632]
  28. Science. 1994 Oct 21;266(5184):404-9 [PMID: 7545955]
  29. Nucleic Acids Res. 2014 Apr;42(6):3648-65 [PMID: 24393774]
  30. Mol Cell Biol. 2002 Sep;22(18):6384-92 [PMID: 12192038]
  31. Trends Cancer. 2015 Oct 1;1(2):145-156 [PMID: 26645051]
  32. Cell. 2017 Jun 29;170(1):72-85.e14 [PMID: 28666126]
  33. Genetics. 1996 Dec;144(4):1399-412 [PMID: 8978029]
  34. Nat Rev Genet. 2010 May;11(5):319-30 [PMID: 20351727]
  35. Nat Rev Cancer. 2002 Nov;2(11):879-84 [PMID: 12415258]
  36. Nature. 2007 Aug 16;448(7155):820-3 [PMID: 17671506]
  37. Genome Res. 2017 May;27(5):722-736 [PMID: 28298431]
  38. Genetics. 2004 Sep;168(1):49-63 [PMID: 15454526]
  39. EMBO J. 2009 Aug 19;28(16):2309-22 [PMID: 19629031]
  40. Nat Struct Mol Biol. 2012 Feb 12;19(3):307-13 [PMID: 22343724]
  41. Genetics. 1990 Mar;124(3):547-59 [PMID: 2179053]
  42. Genes Dev. 2014 Nov 1;28(21):2394-406 [PMID: 25367035]
  43. Mol Cell Biol. 2000 Jul;20(14):5300-9 [PMID: 10866686]
  44. Annu Rev Genet. 2006;40:209-35 [PMID: 16805667]
  45. Nat Commun. 2015 Jul 09;6:7680 [PMID: 26158780]
  46. Mol Cell Biol. 2001 Mar;21(5):1819-27 [PMID: 11238918]
  47. Cold Spring Harb Perspect Biol. 2015 Aug 03;7(8):a016501 [PMID: 26238353]
  48. Annu Rev Biochem. 2006;75:111-35 [PMID: 16756487]
  49. Genes Dev. 2007 Oct 1;21(19):2485-94 [PMID: 17908934]
  50. Nature. 2011 Oct 23;479(7372):245-8 [PMID: 22020281]

Grants

  1. P30 CA086862/NCI NIH HHS
  2. R21 ES030307/NIEHS NIH HHS
  3. R35 GM127006/NIGMS NIH HHS

MeSH Term

DNA
Rad51 Recombinase
Recombination, Genetic
Saccharomyces cerevisiae
Telomerase
Telomere
Telomere Homeostasis

Chemicals

DNA
Rad51 Recombinase
Telomerase

Word Cloud

Created with Highcharts 10.0.0ALTrecombinationpathwaytelomeresunifiedlengtheningcellssurvivorultra-longsequencingalternativeyeastAlternativeprocessmaintainsabsencetelomerasehelpscancersurviveYeastusedrobustmodelhoweverinabilitydeterminefrequencystructuresurvivorshindersunderstandingmechanismusingpopulationmoleculargeneticsapproachesovercomeproblemsdemonstratecontrarycurrentviewRAD51-dependentRAD51-independentmechanismsrequiredconclusionbasedcalculationfrequencieswellproductsrevealedhybridsequencescontainingfeaturesattributedpathwaysSequencingintermediatesdemonstratesbeginsRad51-mediatedstrandinvasionformDNAsubstratesmaturedRad51-independentssDNAannealingsimilarmayoperateorganismsincludinghumanstelomere-lengtheningRad51Rad59break-inducedreplication

Similar Articles

Cited By