Chitosan-Human Bone Composite Granulates for Guided Bone Regeneration.

Piotr Kowalczyk, Rafał Podgórski, Michał Wojasiński, Grzegorz Gut, Witold Bojar, Tomasz Ciach
Author Information
  1. Piotr Kowalczyk: Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland. ORCID
  2. Rafał Podgórski: Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland. ORCID
  3. Michał Wojasiński: Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland. ORCID
  4. Grzegorz Gut: Department of Transplantology and Central Tissue Bank, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland.
  5. Witold Bojar: Dental Practice Witold Bojar, Opaczewska 43/124B, 02-201 Warsaw, Poland. ORCID
  6. Tomasz Ciach: Department of Biotechnology and Bioprocess Engineering, Faculty of Chemical and Process Engineering, Warsaw University of Technology, Waryńskiego 1, 00-645 Warsaw, Poland. ORCID

Abstract

The search for the perfect bone graft material is an important topic in material science and medicine. Despite human bone being the ideal material, due to its composition, morphology, and familiarity with cells, autografts are widely considered demanding and cause additional stress to the patient because of bone harvesting. However, human bone from tissue banks can be used to prepare materials in eligible form for transplantation. Without proteins and fats, the bone becomes a non-immunogenic matrix for human cells to repopulate in the place of implantation. To repair bone losses, the granulate form of the material is easy to apply and forms an interconnected porous structure. A granulate composed of β-tricalcium phosphate, pulverized human bone, and chitosan-a potent biopolymer applied in tissue engineering, regenerative medicine, and biotechnology-has been developed. A commercial encapsulator was used to obtain granulate, using chitosan gelation upon pH increase. The granulate has been proven in vitro to be non-cytotoxic, suitable for MG63 cell growth on its surface, and increasing alkaline phosphatase activity, an important biological marker of bone tissue growth. Moreover, the granulate is suitable for thermal sterilization without losing its form-increasing its convenience for application in surgery for guided bone regeneration in case of minor or non-load bearing voids in bone tissue.

Keywords

References

  1. Acta Bioeng Biomech. 2012;14(1):39-44 [PMID: 22742431]
  2. J Biomed Mater Res. 2001 Apr;55(1):20-7 [PMID: 11426393]
  3. Colloids Surf B Biointerfaces. 2020 Sep;193:111056 [PMID: 32403035]
  4. J Biomed Mater Res. 2001 Feb;54(2):162-71 [PMID: 11093175]
  5. J Bone Joint Surg Am. 2002 Mar;84(3):454-64 [PMID: 11886919]
  6. Bioact Mater. 2017 Jun 07;2(4):224-247 [PMID: 29744432]
  7. PLoS One. 2015 Jan 30;10(1):e0116468 [PMID: 25635832]
  8. Materials (Basel). 2018 Jan 14;11(1): [PMID: 29342890]
  9. J Mech Behav Biomed Mater. 2015 Nov;51:88-98 [PMID: 26232670]
  10. J Orthop Trauma. 2019 Apr;33(4):203-213 [PMID: 30633080]
  11. Int J Nanomedicine. 2017 Jul 12;12:4937-4961 [PMID: 28761338]
  12. Int J Biol Macromol. 2016 Aug;89:287-96 [PMID: 27132881]
  13. Biomater Res. 2014 Nov 24;18:18 [PMID: 26331069]
  14. Cell Adh Migr. 2010 Jul-Sep;4(3):377-81 [PMID: 20421733]
  15. Bioact Mater. 2017 Sep 18;3(1):129-138 [PMID: 29744450]
  16. Mar Drugs. 2017 Apr 04;15(4): [PMID: 28375187]
  17. J Nanosci Nanotechnol. 2018 Jun 1;18(6):3844-3849 [PMID: 29442717]
  18. J Craniofac Surg. 2005 Nov;16(6):981-9 [PMID: 16327544]
  19. Int J Mol Sci. 2015 Aug 05;16(8):18149-84 [PMID: 26251901]
  20. ACS Biomater Sci Eng. 2017 Jul 10;3(7):1175-1194 [PMID: 33440508]
  21. J Mater Sci Mater Med. 2015 Mar;26(3):143 [PMID: 25737128]
  22. Int J Nanomedicine. 2017 Apr 04;12:2673-2687 [PMID: 28435251]
  23. Acta Biomater. 2008 Sep;4(5):1315-21 [PMID: 18486574]
  24. J Biomater Appl. 2014 Mar;28(7):1060-8 [PMID: 23796631]
  25. J Adv Prosthodont. 2011 Sep;3(3):145-51 [PMID: 22053246]
  26. Int J Legal Med. 2019 Jan;133(1):269-276 [PMID: 29549421]
  27. Biomater Res. 2019 Mar 14;23:9 [PMID: 30915231]
  28. J Clin Diagn Res. 2013 Dec;7(12):2926-8 [PMID: 24551676]
  29. World J Clin Cases. 2015 Jan 16;3(1):52-7 [PMID: 25610850]
  30. Int J Mol Sci. 2019 Nov 24;20(23): [PMID: 31771245]
  31. Glob Cardiol Sci Pract. 2013 Nov 01;2013(3):316-42 [PMID: 24689032]
  32. Int J Mol Sci. 2012;13(5):6102-16 [PMID: 22754352]
  33. Mar Drugs. 2018 Jan 13;16(1): [PMID: 29342834]
  34. Injury. 2007 Mar;38 Suppl 1:S75-80 [PMID: 17383488]
  35. Indian J Dent Res. 2011 May-Jun;22(3):496 [PMID: 22048602]
  36. Tissue Eng Part A. 2010 Aug;16(8):2505-18 [PMID: 20218874]
  37. J Biomed Mater Res A. 2007 Dec 1;83(3):845-52 [PMID: 17559128]
  38. Biomater Res. 2019 Jan 14;23:4 [PMID: 30675377]
  39. Front Med. 2019 Apr;13(2):189-201 [PMID: 30377934]
  40. Gels. 2018 Aug 09;4(3): [PMID: 30674843]
  41. Mar Drugs. 2015 Apr 01;13(4):1819-46 [PMID: 25837983]
  42. Mater Sci Eng C Mater Biol Appl. 2019 Nov;104:109960 [PMID: 31500051]

MeSH Term

Bone Regeneration
Bone and Bones
Calcium Phosphates
Cell Line
Chitosan
Humans
Materials Testing

Chemicals

Calcium Phosphates
beta-tricalcium phosphate
Chitosan