Regulation of mating genes during arbuscular mycorrhizal isolate co-existence-where is the evidence?

Mathu Malar C, Christophe Roux, Nicolas Corradi
Author Information
  1. Mathu Malar C: Department of Biology, University of Ottawa, Ottawa, ON, Canada.
  2. Christophe Roux: Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, UPS, CNRS 24 Chemin de Borde Rouge-Auzeville, Castanet-Tolosan, France.
  3. Nicolas Corradi: Department of Biology, University of Ottawa, Ottawa, ON, Canada. ncorradi@uottawa.ca. ORCID

Abstract

A recent study published by Mateus et al. [1] claimed that 18 "mating-related" genes are differentially expressed in the model arbuscular mycorrhizal fungus (AMF) Rhizophagus irregularis when genetically distinct fungal strains co-colonize a host plant. To clarify the level of evidence for this interesting conclusion, we first aimed to validate the functional annotation of these 18 R. irregularis genes using orthology predictions. These analyses revealed that, although sequence relationship exists, only 2 of the claimed 18 R. irregularis mating genes are potential orthologues to validated fungal mating genes. We also investigated the RNA-seq data from Mateus et al. [1] using classical RNA-seq methods and statistics. This analysis found that the over-expression during strain co-existence was not significant at the typical cut-off of the R. irregularis strains DAOM197198 and B1 in plants. Overall, we do not find convincing evidence that the genes involved have functions in mating, or that they are reproducibly up or down regulated during co-existence in plants.

References

  1. New Phytol. 2018 Dec;220(4):1161-1171 [PMID: 29355972]
  2. Nat Methods. 2016 May;13(5):425-30 [PMID: 27043882]
  3. Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):11841-3 [PMID: 11607500]
  4. Nat Rev Genet. 2013 May;14(5):360-6 [PMID: 23552219]
  5. Trends Plant Sci. 2020 Aug;25(8):765-778 [PMID: 32534868]
  6. Trends Microbiol. 2020 Jul;28(7):517-519 [PMID: 32360097]
  7. Trends Biochem Sci. 2012 Dec;37(12):553-62 [PMID: 23153957]
  8. Elife. 2018 Dec 05;7: [PMID: 30516133]
  9. Genome Biol Evol. 2011;3:950-8 [PMID: 21876220]
  10. New Phytol. 2014 Jan;201(1):254-268 [PMID: 24033097]
  11. Bioinformatics. 2014 Nov 1;30(21):2993-8 [PMID: 25064571]
  12. ISME J. 2020 Oct;14(10):2381-2394 [PMID: 32514118]
  13. Trends Plant Sci. 2017 Feb;22(2):175-183 [PMID: 27876487]
  14. New Phytol. 2019 May;222(3):1584-1598 [PMID: 30636349]
  15. PLoS One. 2013 Nov 19;8(11):e80729 [PMID: 24260466]
  16. Nat Microbiol. 2016 Mar 21;1(6):16033 [PMID: 27572831]
  17. Proc Natl Acad Sci U S A. 2013 Dec 10;110(50):20117-22 [PMID: 24277808]
  18. Genome Res. 2003 Sep;13(9):2178-89 [PMID: 12952885]
  19. Nucleic Acids Res. 2014 Jan;42(Database issue):D699-704 [PMID: 24297253]

MeSH Term

Fungi
Genes, Fungal
Glomeromycota
Mycorrhizae
Symbiosis

Word Cloud

Created with Highcharts 10.0.0genesirregularismating18RMateusetal[1]claimedarbuscularmycorrhizalfungalstrainsevidenceusingRNA-seqco-existenceplantsrecentstudypublished"mating-related"differentiallyexpressedmodelfungusAMFRhizophagusgeneticallydistinctco-colonizehostplantclarifylevelinterestingconclusionfirstaimedvalidatefunctionalannotationorthologypredictionsanalysesrevealedalthoughsequencerelationshipexists2potentialorthologuesvalidatedalsoinvestigateddataclassicalmethodsstatisticsanalysisfoundover-expressionstrainsignificanttypicalcut-offDAOM197198B1Overall we donot findconvincinginvolvedfunctionsreproduciblyup ordown regulatedRegulationisolateco-existence-whereevidence?

Similar Articles

Cited By