C-H Activation: Toward Sustainability and Applications.

Toryn Dalton, Teresa Faber, Frank Glorius
Author Information
  1. Toryn Dalton: Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany.
  2. Teresa Faber: Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany.
  3. Frank Glorius: Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraβe 4048149 Münster, Germany.

Abstract

Since the definition of the "12 Principles of Green Chemistry" more than 20 years ago, chemists have become increasingly mindful of the need to conserve natural resources and protect the environment through the judicious choice of synthetic routes and materials. The direct activation and functionalization of C-H bonds, bypassing intermediate functional group installation is, , step and atom economic, but numerous factors still hinder the sustainability of large-scale applications. In this Outlook, we highlight the research areas seeking to overcome the sustainability challenges of C-H activation: the pursuit of abundant metal catalysts, the avoidance of static directing groups, the replacement of metal oxidants, and the introduction of bioderived solvents. We close by examining the progress made in the subfield of aryl C-H borylation from its origins, through highly efficient but precious Ir-based systems, to emerging 3d metal catalysts. The future growth of this field will depend on industrial uptake, and thus we urge researchers to strive toward sustainable C-H activation.

References

  1. J Am Chem Soc. 2014 Jul 16;136(28):9914-7 [PMID: 24965384]
  2. J Am Chem Soc. 2015 Jul 1;137(25):8058-61 [PMID: 26079939]
  3. J Am Chem Soc. 2018 Apr 25;140(16):5599-5606 [PMID: 29652497]
  4. Chem Soc Rev. 2020 Sep 1;49(17):6154-6168 [PMID: 32672294]
  5. Science. 1991 Dec 6;254(5037):1471-7 [PMID: 1962206]
  6. J Am Chem Soc. 2012 Feb 1;134(4):2036-9 [PMID: 22260649]
  7. Angew Chem Int Ed Engl. 2020 Aug 3;59(32):13451-13457 [PMID: 32243685]
  8. Chem Commun (Camb). 2020 Oct 25;56(83):12479-12521 [PMID: 32985634]
  9. J Am Chem Soc. 2013 May 22;135(20):7450-3 [PMID: 23647450]
  10. J Am Chem Soc. 2016 Aug 3;138(30):9487-97 [PMID: 27327895]
  11. Angew Chem Int Ed Engl. 2015 May 4;54(19):5772-6 [PMID: 25783208]
  12. Nature. 2015 Nov 5;527(7576):86-90 [PMID: 26503048]
  13. Science. 2002 Jan 11;295(5553):305-8 [PMID: 11719693]
  14. J Am Chem Soc. 2014 Mar 19;136(11):4133-6 [PMID: 24588541]
  15. J Am Chem Soc. 2020 Sep 16;142(37):16039-16050 [PMID: 32885969]
  16. ACS Catal. 2017 Jul 7;7(7):4366-4371 [PMID: 29479489]
  17. Nature. 2016 Sep 8;537(7619):214-219 [PMID: 27479323]
  18. PLoS One. 2014 Jul 07;9(7):e101298 [PMID: 24999810]
  19. Chem Sci. 2015 Mar 1;6(3):1816-1824 [PMID: 29308135]
  20. Nature. 2016 Mar 10;531(7593):220-224 [PMID: 26886789]
  21. Angew Chem Int Ed Engl. 2011 Feb 25;50(9):1977-9 [PMID: 21294233]
  22. Chem Sci. 2020 Jul 31;11(33):8657-8670 [PMID: 34123124]
  23. J Am Chem Soc. 2015 Nov 25;137(46):14590-14593 [PMID: 26536374]
  24. J Am Chem Soc. 2009 Apr 15;131(14):5058-9 [PMID: 19351202]
  25. Angew Chem Int Ed Engl. 2021 Feb 8;60(6):2909-2914 [PMID: 33111492]
  26. Nat Chem. 2020 Jun;12(6):511-519 [PMID: 32472105]
  27. J Am Chem Soc. 2017 Dec 27;139(51):18452-18455 [PMID: 29149561]
  28. J Am Chem Soc. 2009 Apr 15;131(14):5072-4 [PMID: 19296661]
  29. J Am Chem Soc. 2020 Nov 11;142(45):19052-19057 [PMID: 33124802]
  30. Chem Soc Rev. 2011 Sep;40(9):4740-61 [PMID: 21666903]
  31. Nat Protoc. 2020 May;15(5):1760-1774 [PMID: 32296151]
  32. Angew Chem Int Ed Engl. 2017 Oct 2;56(41):12778-12782 [PMID: 28809458]
  33. J Am Chem Soc. 2018 Mar 28;140(12):4195-4199 [PMID: 29522680]
  34. Chem Commun (Camb). 2008 Aug 7;(29):3352-65 [PMID: 18633490]
  35. Chem Soc Rev. 2015 Mar 7;44(5):1155-71 [PMID: 25417560]
  36. J Am Chem Soc. 2008 Aug 27;130(34):11270-1 [PMID: 18671350]
  37. Nat Chem. 2020 Aug;12(8):725-731 [PMID: 32541949]
  38. Chem Rev. 2019 Feb 27;119(4):2192-2452 [PMID: 30480438]
  39. J Am Chem Soc. 2011 Feb 23;133(7):2088-91 [PMID: 21268578]
  40. J Am Chem Soc. 2019 Feb 13;141(6):2268-2273 [PMID: 30715868]
  41. Chem Soc Rev. 2018 Aug 28;47(17):6603-6743 [PMID: 30033454]
  42. Proc Natl Acad Sci U S A. 2015 Apr 7;112(14):4257-62 [PMID: 25831527]
  43. J Am Chem Soc. 2008 Oct 29;130(43):14090-1 [PMID: 18831588]
  44. Angew Chem Int Ed Engl. 2018 Apr 23;57(18):5090-5094 [PMID: 29509336]
  45. J Am Chem Soc. 2009 Aug 26;131(33):11701-6 [PMID: 19645492]
  46. J Am Chem Soc. 2014 Dec 3;136(48):16940-6 [PMID: 25384178]
  47. Nat Chem. 2020 Mar;12(3):276-283 [PMID: 32042137]
  48. J Am Chem Soc. 2018 Feb 28;140(8):2789-2792 [PMID: 29412651]
  49. Chem Commun (Camb). 2012 Nov 11;48(87):10745-7 [PMID: 23023187]
  50. Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1809-13 [PMID: 24505001]
  51. J Am Chem Soc. 2013 Aug 14;135(32):12032-7 [PMID: 23855956]
  52. Chem Rev. 2018 Jan 24;118(2):747-800 [PMID: 29300087]
  53. J Am Chem Soc. 2014 Mar 12;136(10):4003-11 [PMID: 24571655]
  54. Angew Chem Int Ed Engl. 2018 Nov 12;57(46):15248-15252 [PMID: 30152920]
  55. J Am Chem Soc. 2017 Oct 18;139(41):14586-14591 [PMID: 28921954]
  56. J Am Chem Soc. 2019 May 15;141(19):7980-7989 [PMID: 31034226]
  57. J Am Chem Soc. 2020 Jun 3;142(22):9966-9974 [PMID: 32363869]
  58. Angew Chem Int Ed Engl. 2020 Feb 17;59(8):3178-3183 [PMID: 31729814]
  59. J Am Chem Soc. 2019 Oct 16;141(41):16479-16485 [PMID: 31539230]
  60. Angew Chem Int Ed Engl. 2019 Jun 17;58(25):8572-8576 [PMID: 30932282]
  61. J Am Chem Soc. 2003 Dec 24;125(51):16114-26 [PMID: 14678004]
  62. Angew Chem Int Ed Engl. 2020 Oct 19;59(43):18860-18865 [PMID: 32931084]
  63. Org Biomol Chem. 2018 Jul 4;16(26):4864-4873 [PMID: 29926879]
  64. Angew Chem Int Ed Engl. 2018 Feb 23;57(9):2383-2387 [PMID: 29316187]
  65. Science. 2010 Jan 29;327(5965):566-71 [PMID: 20110502]
  66. Org Biomol Chem. 2016 Feb 28;14(8):2373-84 [PMID: 26699438]
  67. Angew Chem Int Ed Engl. 2018 Sep 10;57(37):11947-11951 [PMID: 30055031]
  68. ACS Catal. 2020 May 15;10(10):5657-5662 [PMID: 33996194]
  69. J Am Chem Soc. 2017 Apr 26;139(16):5704-5707 [PMID: 28399364]
  70. Nat Chem. 2018 Jun;10(6):583-591 [PMID: 29713037]
  71. ACS Cent Sci. 2016 May 25;2(5):281-92 [PMID: 27294201]
  72. J Am Chem Soc. 2016 Aug 24;138(33):10645-53 [PMID: 27476954]
  73. J Am Chem Soc. 2018 Jun 6;140(22):6818-6822 [PMID: 29787251]
  74. Chem Commun (Camb). 2020 Mar 5;56(19):2889-2892 [PMID: 32037434]
  75. Angew Chem Int Ed Engl. 2019 May 20;58(21):7117-7121 [PMID: 30892775]
  76. J Am Chem Soc. 2017 Feb 22;139(7):2825-2832 [PMID: 28139907]
  77. J Am Chem Soc. 2013 Sep 25;135(38):14052-5 [PMID: 24020940]
  78. J Am Chem Soc. 2015 Apr 1;137(12):4062-5 [PMID: 25782140]
  79. J Org Chem. 2019 Oct 18;84(20):13104-13111 [PMID: 31497964]
  80. J Am Chem Soc. 2013 Jan 30;135(4):1264-7 [PMID: 23286776]
  81. J Am Chem Soc. 2020 Dec 9;142(49):20828-20836 [PMID: 33238707]
  82. Science. 2016 Jan 15;351(6270):252-6 [PMID: 26816374]
  83. J Am Chem Soc. 2005 May 18;127(19):6970-1 [PMID: 15884938]
  84. J Org Chem. 2011 Mar 4;76(5):1436-9 [PMID: 21284400]
  85. J Am Chem Soc. 2019 Jun 19;141(24):9468-9473 [PMID: 31140795]
  86. J Am Chem Soc. 2020 Jul 29;142(30):13136-13144 [PMID: 32594737]
  87. J Am Chem Soc. 2013 May 22;135(20):7572-82 [PMID: 23534698]
  88. Angew Chem Int Ed Engl. 2018 Feb 23;57(9):2296-2306 [PMID: 29205745]
  89. ACS Catal. 2020 Mar 6;10(5):3415-3424 [PMID: 33178481]
  90. J Am Chem Soc. 2005 Oct 19;127(41):14263-78 [PMID: 16218621]
  91. Acc Chem Res. 2012 Jun 19;45(6):851-63 [PMID: 22263575]
  92. J Am Chem Soc. 2010 Mar 24;132(11):3676-7 [PMID: 20187645]
  93. Angew Chem Int Ed Engl. 2016 Nov 21;55(48):15166-15170 [PMID: 27785863]
  94. Nat Chem. 2013 May;5(5):369-75 [PMID: 23609086]
  95. Chem Soc Rev. 2011 Apr;40(4):1899-909 [PMID: 21088785]
  96. Chem Commun (Camb). 2020 Nov 11;56(87):13287-13300 [PMID: 33015689]
  97. J Am Chem Soc. 2002 Jan 23;124(3):390-1 [PMID: 11792205]
  98. J Am Chem Soc. 2007 Dec 19;129(50):15434-5 [PMID: 18027947]
  99. Nat Chem. 2016 Dec;8(12):1144-1151 [PMID: 27874862]
  100. Angew Chem Int Ed Engl. 2012 Oct 8;51(41):10236-54 [PMID: 22996679]
  101. J Am Chem Soc. 2018 Mar 7;140(9):3202-3205 [PMID: 29432000]
  102. Chem Soc Rev. 2010 Jan;39(1):301-12 [PMID: 20023854]
  103. ACS Catal. 2018 Nov 2;8(11):10606-10618 [PMID: 30719402]
  104. Angew Chem Int Ed Engl. 2016 Aug 8;55(33):9571-5 [PMID: 27376625]
  105. J Am Chem Soc. 2009 Oct 7;131(39):13888-9 [PMID: 19746974]
  106. Chem Soc Rev. 2020 Mar 21;49(6):1643-1652 [PMID: 32115586]
  107. ChemSusChem. 2020 Feb 21;13(4):668-671 [PMID: 31917522]
  108. J Am Chem Soc. 2020 Jul 29;142(30):13102-13111 [PMID: 32536163]
  109. Chem Sci. 2020 Dec 28;12(8):2890-2897 [PMID: 34164055]
  110. J Am Chem Soc. 2010 Dec 29;132(51):18326-39 [PMID: 21133376]
  111. J Am Chem Soc. 2015 Aug 19;137(32):10160-3 [PMID: 26256033]
  112. J Am Chem Soc. 2015 Apr 22;137(15):5193-8 [PMID: 25860511]
  113. Angew Chem Int Ed Engl. 2015 Nov 2;54(45):13337-40 [PMID: 26358769]
  114. Angew Chem Int Ed Engl. 2016 Jun 6;55(24):6933-7 [PMID: 27112925]
  115. Science. 2007 Nov 2;318(5851):783-7 [PMID: 17975062]
  116. J Am Chem Soc. 2004 Feb 11;126(5):1346-7 [PMID: 14759185]
  117. J Am Chem Soc. 2018 Aug 29;140(34):10658-10662 [PMID: 30091907]
  118. Chemistry. 2019 Jul 17;25(40):9366-9384 [PMID: 31116458]
  119. Chem Soc Rev. 2020 Jul 6;49(13):4254-4272 [PMID: 32458919]
  120. Angew Chem Int Ed Engl. 2002 Aug 16;41(16):3056-8 [PMID: 12203457]
  121. Chem Sci. 2017 May 1;8(5):3379-3383 [PMID: 28507708]
  122. Chem Soc Rev. 2020 Aug 7;49(15):5310-5358 [PMID: 32568340]
  123. Angew Chem Int Ed Engl. 2014 May 5;53(19):4950-3 [PMID: 24700597]
  124. J Am Chem Soc. 2013 Dec 11;135(49):18350-3 [PMID: 24256439]
  125. Nat Chem. 2019 Mar;11(3):213-221 [PMID: 30559371]
  126. Nature. 2019 Sep;573(7774):311 [PMID: 31530929]
  127. J Am Chem Soc. 2007 Jun 13;129(23):7274-6 [PMID: 17516648]
  128. J Am Chem Soc. 2006 Jan 11;128(1):56-7 [PMID: 16390119]
  129. Chem Soc Rev. 2016 May 21;45(10):2900-36 [PMID: 27072661]
  130. J Am Chem Soc. 2014 Mar 19;136(11):4287-99 [PMID: 24506058]
  131. J Am Chem Soc. 2019 Sep 25;141(38):15378-15389 [PMID: 31449749]

Word Cloud

Created with Highcharts 10.0.0C-HmetalactivationsustainabilitycatalystsSincedefinition"12PrinciplesGreenChemistry"20yearsagochemistsbecomeincreasinglymindfulneedconservenaturalresourcesprotectenvironmentjudiciouschoicesyntheticroutesmaterialsdirectfunctionalizationbondsbypassingintermediatefunctionalgroupinstallationstepatomeconomicnumerousfactorsstillhinderlarge-scaleapplicationsOutlookhighlightresearchareasseekingovercomechallengesactivation:pursuitabundantavoidancestaticdirectinggroupsreplacementoxidantsintroductionbioderivedsolventscloseexaminingprogressmadesubfieldarylborylationoriginshighlyefficientpreciousIr-basedsystemsemerging3dfuturegrowthfieldwilldependindustrialuptakethusurgeresearchersstrivetowardsustainableActivation:TowardSustainabilityApplications

Similar Articles

Cited By