Exogenous ketone salts inhibit superoxide production in the rat caudal solitary complex during exposure to normobaric and hyperbaric hyperoxia.

Christopher M Hinojo, Geoffrey E Ciarlone, Dominic P D'Agostino, Jay B Dean
Author Information
  1. Christopher M Hinojo: Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida.
  2. Geoffrey E Ciarlone: Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida.
  3. Dominic P D'Agostino: Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida.
  4. Jay B Dean: Department of Molecular Pharmacology and Physiology, Hyperbaric Biomedical Research Laboratory, Morsani College of Medicine, MDC 8, University of South Florida, Tampa, Florida.

Abstract

The use of hyperbaric oxygen (HBO) in hyperbaric and undersea medicine is limited by the risk of seizures [i.e., central nervous system (CNS) oxygen toxicity, CNS-OT] resulting from increased production of reactive oxygen species (ROS) in the CNS. Importantly, ketone supplementation has been shown to delay onset of CNS-OT in rats by ∼600% in comparison with control groups (D'Agostino DP, Pilla R, Held HE, Landon CS, Puchowicz M, Brunengraber H, Ari C, Arnold P, Dean JB. 304: R829-R836, 2013). We have tested the hypothesis that ketone body supplementation inhibits ROS production during exposure to hyperoxygenation in rat brainstem cells. We measured the rate of cellular superoxide ([Formula: see text]) production in the caudal solitary complex (cSC) in rat brain slices using a fluorogenic dye, dihydroethidium (DHE), during exposure to control O (0.4 ATA) followed by 1-2h of normobaric oxygen (NBO) (0.95 ATA) and HBO (1.95, and 4.95 ATA) hyperoxia, with and without a 50:50 mixture of ketone salts (KS) dl-β-hydroxybutyrate + acetoacetate. All levels of hyperoxia tested stimulated [Formula: see text] production similarly in cSC cells and coexposure to 5mM KS during hyperoxia significantly blunted the rate of increase in DHE fluorescence intensity during exposure to hyperoxia. Not all cells tested produced [Formula: see text] at the same rate during exposure to control O and hyperoxygenation; cells that increased [Formula: see text] production by >25% during hyperoxia in comparison with baseline were inhibited by KS, whereas cells that did not reach that threshold during hyperoxia were unaffected by KS. These findings support the hypothesis that ketone supplementation decreases the steady-state concentrations of superoxide produced during exposure to NBO and HBO hyperoxia. Exposure of rat medullary tissue slices to levels of O that mimic those that cause seizures in rats stimulates cellular superoxide ([Formula: see text]) production to varying degrees. Cellular [Formula: see text] generation in the caudal solitary complex is variable during exposure to control O and hyperoxia and significantly decreases during ketone supplementation. Our findings support the theory that ketone supplementation delays onset of central nervous system oxygen toxicity in mammals, in part, by decreasing [Formula: see text] production in O-sensitive neurons.

Keywords

References

  1. Epilepsy Res. 2020 Nov;167:106469 [PMID: 33038721]
  2. Physiol Rep. 2019 Jan;7(1):e13961 [PMID: 30604923]
  3. J Appl Physiol (1985). 2003 Sep;95(3):922-30 [PMID: 12704095]
  4. Ann Neurol. 2006 Aug;60(2):223-35 [PMID: 16807920]
  5. J Neurochem. 2012 Apr;121(1):28-35 [PMID: 22268909]
  6. J Neurosci. 2011 Jun 8;31(23):8689-96 [PMID: 21653873]
  7. Methods Enzymol. 2002;352:307-25 [PMID: 12125357]
  8. Neuroreport. 2001 Jun 13;12(8):1601-4 [PMID: 11409724]
  9. J Biol Chem. 1994 Oct 14;269(41):25502-14 [PMID: 7929251]
  10. J Appl Physiol (1985). 2001 May;90(5):1887-99 [PMID: 11299283]
  11. J Appl Physiol (1985). 2010 Jun;108(6):1786-95 [PMID: 20150563]
  12. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11715-20 [PMID: 9751731]
  13. Neuroscience. 2014 Jun 13;270:98-122 [PMID: 24704511]
  14. J Neurophysiol. 2007 Aug;98(2):1030-41 [PMID: 17553943]
  15. FEBS Lett. 2000 Jul 28;478(1-2):29-33 [PMID: 10922464]
  16. Annu Rev Nutr. 2006;26:1-22 [PMID: 16848698]
  17. Front Pharmacol. 2012 Apr 09;3:59 [PMID: 22509165]
  18. PLoS One. 2014 Feb 07;9(2):e88161 [PMID: 24516602]
  19. J Appl Physiol (1985). 2010 Sep;109(3):804-19 [PMID: 20558753]
  20. Science. 2013 Jan 11;339(6116):211-4 [PMID: 23223453]
  21. Front Neural Circuits. 2015 May 29;9:27 [PMID: 26074779]
  22. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9715-9 [PMID: 1329105]
  23. Am J Physiol Cell Physiol. 2016 Dec 1;311(6):C1027-C1039 [PMID: 27733363]
  24. J Neurochem. 2007 Jun;101(5):1316-26 [PMID: 17403035]
  25. Physiol Rep. 2014 Apr 09;2(4):e00282 [PMID: 24771690]
  26. Proc Natl Acad Sci U S A. 2020 Mar 17;117(11):6170-6177 [PMID: 32127481]
  27. J Appl Physiol (1985). 2000 Aug;89(2):807-22 [PMID: 10926669]
  28. Redox Biol. 2019 Oct;27:101159 [PMID: 30902504]
  29. Epilepsia. 2007 Jan;48(1):43-58 [PMID: 17241207]
  30. Brain Res. 1997 Jun 27;761(1):146-50 [PMID: 9247077]
  31. J Physiol. 1986 Jan;370:489-99 [PMID: 3958984]
  32. Infect Immun. 1998 Apr;66(4):1293-8 [PMID: 9529045]
  33. J Appl Physiol (1985). 2004 Feb;96(2):784-91 [PMID: 14715688]
  34. Respir Physiol Neurobiol. 2009 Sep 30;168(3):272-80 [PMID: 19619674]
  35. Am J Physiol Regul Integr Comp Physiol. 2013 May 15;304(10):R829-36 [PMID: 23552496]
  36. Am J Physiol Cell Physiol. 2016 Dec 1;311(6):C1014-C1026 [PMID: 27733362]
  37. J Neurosci Res. 2005 May 15;80(4):501-9 [PMID: 15825191]
  38. Front Neurosci. 2019 Oct 15;13:1041 [PMID: 31680801]
  39. J Appl Physiol (1985). 2003 Sep;95(3):883-909 [PMID: 12909594]
  40. J Appl Physiol (1985). 2013 Apr;114(8):1009-20 [PMID: 23429869]
  41. J Cereb Blood Flow Metab. 2012 Jan;32(1):23-32 [PMID: 21847136]
  42. J Neurosci. 2015 Dec 9;35(49):16213-20 [PMID: 26658871]
  43. Aviat Space Environ Med. 1989 Mar;60(3):256-62 [PMID: 2653301]
  44. J Mol Cell Cardiol. 1997 Sep;29(9):2571-83 [PMID: 9299379]
  45. FASEB J. 1995 May;9(8):651-8 [PMID: 7768357]
  46. J Appl Physiol (1985). 2003 Sep;95(3):910-21 [PMID: 12704094]
  47. Am J Physiol Lung Cell Mol Physiol. 2007 Jul;293(1):L229-38 [PMID: 17416738]
  48. Exp Physiol. 2006 Sep;91(5):807-19 [PMID: 16857720]
  49. Am J Physiol Cell Physiol. 2004 Apr;286(4):C940-51 [PMID: 14668260]
  50. J Cereb Blood Flow Metab. 2008 Jan;28(1):1-16 [PMID: 17684514]
  51. Ann Neurol. 2004 Apr;55(4):576-80 [PMID: 15048898]
  52. Physiol Rev. 2002 Jan;82(1):47-95 [PMID: 11773609]
  53. Neurochem Int. 2005 Jul;47(1-2):119-28 [PMID: 15888376]
  54. J Clin Invest. 2011 Jul;121(7):2679-83 [PMID: 21701065]
  55. J Neurosci Methods. 1995 Jun;59(1):139-49 [PMID: 7475244]
  56. Epilepsia. 2013 Dec;54(12):2048-59 [PMID: 24117098]
  57. J Clin Invest. 2003 Sep;112(6):892-901 [PMID: 12975474]
  58. Lancet Neurol. 2018 Jan;17(1):84-93 [PMID: 29263011]
  59. Nitric Oxide. 2009 May;20(3):207-16 [PMID: 19291838]
  60. Dev Neurosci. 1998;20(4-5):358-64 [PMID: 9778572]
  61. Neuroscience. 2007 Mar 2;145(1):256-64 [PMID: 17240074]
  62. J Neurosci. 2007 Apr 4;27(14):3618-25 [PMID: 17409226]
  63. J Appl Physiol. 1963 Sep;18:869-76 [PMID: 14063253]
  64. Neurosci Lett. 2017 Jan 10;637:4-10 [PMID: 26222258]
  65. Free Radic Biol Med. 2013 Sep;62:121-131 [PMID: 23411150]
  66. J Neurosci Methods. 1996 Oct;68(2):149-63 [PMID: 8912188]
  67. Am J Physiol Lung Cell Mol Physiol. 2011 Jan;300(1):L102-11 [PMID: 20971806]

MeSH Term

Animals
Hyperbaric Oxygenation
Hyperoxia
Ketones
Oxygen
Rats
Rats, Sprague-Dawley
Salts
Superoxides

Chemicals

Ketones
Salts
Superoxides
Oxygen

Word Cloud

Created with Highcharts 10.0.0hyperoxiaproductionoxygenketoneexposure[Formula:seetext]supplementationcellshyperbariccontrolratsuperoxidesolitaryOKSHBOtestedratecaudalcomplexATA95seizurescentralnervoussystemCNStoxicityincreasedreactivespeciesROSonsetratscomparisonhypothesishyperoxygenationcellularcSCslicesDHE04normobaricNBOsaltsacetoacetatelevelssignificantlyproducedfindingssupportdecreasesuseunderseamedicinelimitedrisk[ieCNS-OT]resultingImportantlyshowndelayCNS-OT∼600%groupsD'AgostinoDPPillaRHeldHELandonCSPuchowiczMBrunengraberHAriCArnoldPDeanJB304:R829-R8362013bodyinhibitsbrainstemmeasuredbrainusingfluorogenicdyedihydroethidiumfollowed1-2h1without50:50mixturedl-β-hydroxybutyrate+stimulatedsimilarlycoexposure5mMbluntedincreasefluorescenceintensity>25%baselineinhibitedwhereasreachthresholdunaffectedsteady-stateconcentrationsExposuremedullarytissuemimiccausestimulatesvaryingdegreesCellulargenerationvariabletheorydelaysmammalspartdecreasingO-sensitiveneuronsExogenousinhibitbeta-hydroxybutyratenucleustract

Similar Articles

Cited By