Compact, low-noise microwave sources are required throughout a wide range of application areas including frequency metrology, wireless-communications and airborne radar systems. And the photonic generation of microwaves using soliton microcombs offers a path towards integrated, low noise microwave signal sources. In these devices, a so called quiet-point of operation has been shown to reduce microwave frequency noise. Such operation decouples pump frequency noise from the soliton's motion by balancing the Raman self-frequency shift with dispersive-wave recoil. Here, we explore the limit of this noise suppression approach and reveal a fundamental noise mechanism associated with fluctuations of the dispersive wave frequency. At the same time, pump noise reduction by as much as 36 dB is demonstrated. This fundamental noise mechanism is expected to impact microwave noise (and pulse timing jitter) whenever solitons radiate into dispersive waves belonging to different spatial mode families.
References
Kippenberg, T. J., Gaeta, A. L., Lipson, M. & Gorodetsky, M. L. Dissipative Kerr solitons in optical microresonators. Science 361, eaan8083 (2018).
[PMID: 30093576]
Yi, X., Yang, Q.-F., Yang, K. Y., Suh, M.-G. & Vahala, K. Soliton frequency comb at microwave rates in a high-Q silica microresonator. Optica 2, 1078–1085 (2015).
[DOI: 10.1364/OPTICA.2.001078]
Herr, T. et al. Mode spectrum and temporal soliton formation in optical microresonators. Phys. Rev. Lett. 113, 123901 (2014).
[PMID: 25279630]
Liang, W. et al. High spectral purity Kerr frequency comb radio frequency photonic oscillator. Nat. Commun. 6, 7957 (2015).
[PMID: 26260955]
Yang, K. Y. et al. Bridging ultrahigh-Q devices and photonic circuits. Nat. Photon. 12, 297–302 (2018).
[DOI: 10.1038/s41566-018-0132-5]
Liu, J. et al. Photonic microwave generation in the x-and k-band using integrated soliton microcombs. Nat. Photon. 14, 486–491 (2020).
[DOI: 10.1038/s41566-020-0617-x]
Jin, W. et al. Hertz-linewidth semiconductor lasers using CMOS-ready ultra-high-Q microresonators. Nat. Photon. 15, 1–8 (2021).
Shen, B. et al. Integrated turnkey soliton microcombs. Nature 582, 365–369 (2020).
[PMID: 32555486]
Li, J., Lee, H. & Vahala, K. J. Microwave synthesizer using an on-chip brillouin oscillator. Nat. Commun. 4, 1–7 (2013).
[DOI: 10.1038/ncomms3097]
Tang, J. et al. Integrated optoelectronic oscillator. Opt. Express 26, 12257–12265 (2018).
[PMID: 29716138]
Do, P. T. et al. Wideband tunable microwave signal generation in a silicon-micro-ring-based optoelectronic oscillator. Sci. Rep. 10, 1–9 (2020).
[DOI: 10.1038/s41598-020-63414-9]
Gundavarapu, S. et al. Sub-hertz fundamental linewidth photonic integrated brillouin laser. Nat. Photon. 13, 60–67 (2019).
[DOI: 10.1038/s41566-018-0313-2]
Matsko, A. B. & Maleki, L. On timing jitter of mode locked Kerr frequency combs. Opt. Express 21, 28862–28876 (2013).
[PMID: 24514400]
Bao, C. et al. Quantum diffusion of microcavity solitons. Nat. Phys. 17, 1–5 (2021).
Yi, X., Yang, Q.-F., Yang, K. Y. & Vahala, K. Theory and measurement of the soliton self-frequency shift and efficiency in optical microcavities. Opt. Lett. 41, 3419–3422 (2016).
[PMID: 27472583]
Karpov, M. et al. Raman self-frequency shift of dissipative kerr solitons in an optical microresonator. Phys. Rev. Lett. 116, 103902 (2016).
[PMID: 27015482]
Yang, Q.-F., Yi, X., Yang, K. Y. & Vahala, K. Spatial-mode-interaction-induced dispersive-waves and their active tuning in microresonators. Optica 3, 1132–1135 (2016).
[DOI: 10.1364/OPTICA.3.001132]
Gorodetsky, M. L. & Grudinin, I. S. Fundamental thermal fluctuations in microspheres. J. Opt. Soc. Am. B 21, 697–705 (2004).
[DOI: 10.1364/JOSAB.21.000697]
Matsko, A. B., Savchenkov, A. A., Yu, N. & Maleki, L. Whispering-gallery-mode resonators as frequency references. i. fundamental limitations. J. Opt. Soc. Am. B 24, 1324–1335 (2007).
[DOI: 10.1364/JOSAB.24.001324]
Kondratiev, N. & Gorodetsky, M. Thermorefractive noise in whispering gallery mode microresonators: analytical results and numerical simulation. Phys. Lett. A 382, 2265–2268 (2018).
[DOI: 10.1016/j.physleta.2017.04.043]
Huang, G. et al. Thermorefractive noise in silicon-nitride microresonators. Phys. Rev. A 99, 061801 (2019).
[DOI: 10.1103/PhysRevA.99.061801]
Brasch, V. et al. Photonic chip-based optical frequency comb using soliton Cherenkov radiation. Science 351, 357–360 (2016).
[PMID: 26721682]
Jang, J. K., Erkintalo, M., Murdoch, S. G. & Coen, S. Observation of dispersive wave emission by temporal cavity solitons. Opt. Lett. 39, 5503–5506 (2014).
[PMID: 25360913]
Nielsen, A. U., Garbin, B., Coen, S., Murdoch, S. G. & Erkintalo, M. Invited article: emission of intense resonant radiation by dispersion-managed kerr cavity solitons. APL Photonics 3, 120804 (2018).
[DOI: 10.1063/1.5060123]
Yi, X. et al. Single-mode dispersive waves and soliton microcomb dynamics. Nat. Commun. 8, 1–9 (2017).
[DOI: 10.1038/ncomms14869]
Lee, H. et al. Chemically etched ultrahigh-Q wedge-resonator on a silicon chip. Nat. Photon. 6, 369–373 (2012).
[DOI: 10.1038/nphoton.2012.109]
Wu, L. et al. Greater than one billion Q factor for on-chip microresonators. Opt. Lett. 45, 5129–5131 (2020).
[PMID: 32932469]
Suh, M.-G., Wang, C. Y., Johnson, C. & Vahala, K. J. Directly pumped 10 GHz microcomb modules from low-power diode lasers. Opt. Lett. 44, 1841–1843 (2019).
[PMID: 30933161]
Yi, X., Yang, Q.-F., Youl, K. & Vahala, K. Active capture and stabilization of temporal solitons in microresonators. Opt. Lett. 41, 2037–2040 (2016).
[PMID: 27128068]
Guo, H. et al. Intermode breather solitons in optical microresonators. Phys. Rev. X 7, 041055 (2017).
Lucas, E., Guo, H., Jost, J. D., Karpov, M. & Kippenberg, T. J. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Phys. Rev. A 95, 043822 (2017).
[DOI: 10.1103/PhysRevA.95.043822]
Herr, T. et al. Temporal solitons in optical microresonators. Nat. Photon. 8, 145–152 (2014).
[DOI: 10.1038/nphoton.2013.343]
Stone, J. R. et al. Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs. Phys. Rev. Lett. 121, 063902 (2018).
[PMID: 30141662]
Lucas, E. et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nat. Commun. 11, 1–8 (2020).
[DOI: 10.1038/s41467-019-14059-4]
Ji, X. et al. Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold. Optica 4, 619–624 (2017).
[DOI: 10.1364/OPTICA.4.000619]
Levin, Y. Fluctuation–dissipation theorem for thermo-refractive noise. Phys. Lett. A 372, 1941–1944 (2008).
[DOI: 10.1016/j.physleta.2007.11.007]
Newman, Z. L. et al. Architecture for the photonic integration of an optical atomic clock. Optica 6, 680–685 (2019).
[DOI: 10.1364/OPTICA.6.000680]
Gong, Z. et al. High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators. Opt. Lett. 43, 4366–4369 (2018).
[PMID: 30211865]
He, Y. et al. Self-starting bi-chromatic LiNbO soliton microcomb. Optica 6, 1138–1144 (2019).
[DOI: 10.1364/OPTICA.6.001138]
Pfeiffer, M. H. et al. Octave-spanning dissipative Kerr soliton frequency combs in SiN microresonators. Optica 4, 684–691 (2017).
[DOI: 10.1364/OPTICA.4.000684]
Li, Q. et al. Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica 4, 193–203 (2017).
[PMID: 28603754]
Moille, G. et al. Dissipative Kerr solitons in a III-V microresonator. Laser Photonics Rev. 14, 2000022 (2020).
[DOI: 10.1002/lpor.202000022]
Lee, H. et al. Spiral resonators for on-chip laser frequency stabilization. Nat. Commun. 4, 2468 (2013).
[PMID: 24043134]
Li, J., Lee, H., Yang, K. Y. & Vahala, K. J. Sideband spectroscopy and dispersion measurement in microcavities. Opt. Express 20, 26337–26344 (2012).
[PMID: 23187488]
Carmon, T., Yang, L. & Vahala, K. Dynamical thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).
[PMID: 19484026]
Li, J., Diddams, S. & Vahala, K. J. Pump frequency noise coupling into a microcavity by thermo-optic locking. Opt. Express 22, 14559–14567 (2014).
[PMID: 24977551]
Drake, T. E., Stone, J. R., Briles, T. C. & Papp, S. B. Thermal decoherence and laser cooling of Kerr microresonator solitons. Nat. Photon. 1–6 (2020).
Callen, H. B. & Welton, T. A. Irreversibility and generalized noise. Phys. Rev. 83, 34–40 (1951).
[DOI: 10.1103/PhysRev.83.34]
Landau, L. D., Lifshits, E. M. & Pitaevskii, L. P. Statisticheskaia fizika, vol. 5 (Pergamon, 1980).
Lugiato, L. A. & Lefever, R. Spatial dissipative structures in passive optical systems. Phys. Rev. Lett. 58, 2209 (1987).
[PMID: 10034681]
Merklein, M. et al. Widely tunable, low phase noise microwave source based on a photonic chip. Opt. Lett. 41, 4633–4636 (2016).
[PMID: 28005854]
Grants
FA9453-19-C-002/United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)