Heterogeneity of Microbial Communities in Soils From the Antarctic Peninsula Region.

Pablo Almela, Ana Justel, Antonio Quesada
Author Information
  1. Pablo Almela: Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.
  2. Ana Justel: Department of Mathematics, Universidad Autónoma de Madrid, Madrid, Spain.
  3. Antonio Quesada: Department of Biology, Universidad Autónoma de Madrid, Madrid, Spain.

Abstract

Ice-free areas represent less than 1% of the Antarctic surface. However, climate change models predict a significant increase in temperatures in the coming decades, triggering a relevant reduction of the ice-covered surface. Microorganisms, adapted to the extreme and fluctuating conditions, are the dominant biota. In this article we analyze the diversity and composition of soil bacterial communities in 52 soil samples on three scales: (i) fine scale, where we compare the differences in the microbial community between top-stratum soils (0-2 cm) and deeper-stratum soils (5-10 cm) at the same sampling point; (ii) medium scale, in which we compare the composition of the microbial community of top-stratum soils from different sampling points within the same sampling location; and (iii) coarse scale, where we compare communities between comparable ecosystems located hundreds of kilometers apart along the Antarctic Peninsula. The results suggest that in ice-free soils exposed for longer periods of time (millennia) microbial communities are significantly different along the soil profiles. However, in recently (decades) deglaciated soils the communities are not different along the soil profile. Furthermore, the microbial communities found in soils at the different sampling locations show a high degree of heterogeneity, with a relevant proportion of unique amplicon sequence variants (ASV) that appeared mainly in low abundance, and only at a single sampling location. The Core90 community, defined as the ASVs shared by 90% of the soils from the 4 sampling locations, was composed of 26 ASVs, representing a small percentage of the total sequences. Nevertheless, the taxonomic composition of the Core80 (ASVs shared by 80% of sampling points per location) of the different sampling locations, was very similar, as they were mostly defined by 20 common taxa, representing up to 75.7% of the sequences of the Core80 communities, suggesting a greater homogeneity of soil bacterial taxa among distant locations.

Keywords

References

  1. PLoS One. 2014 Feb 13;9(2):e89108 [PMID: 24551229]
  2. Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1095-1103 [PMID: 30642972]
  3. Environ Microbiol. 2010 Jan;12(1):118-23 [PMID: 19725865]
  4. Microbiome. 2020 Jun 5;8(1):84 [PMID: 32503635]
  5. Mol Ecol. 2014 Feb;23(2):481-97 [PMID: 24112459]
  6. Nucleic Acids Res. 2013 Jan;41(Database issue):D590-6 [PMID: 23193283]
  7. Proc Natl Acad Sci U S A. 2001 Jun 19;98(13):7123-7 [PMID: 11390965]
  8. Environ Microbiol. 2009 Mar;11(3):674-86 [PMID: 19187281]
  9. Sci Rep. 2021 Jun 23;11(1):13135 [PMID: 34162928]
  10. Mol Ecol. 2015 Mar;24(5):1091-108 [PMID: 25533315]
  11. Environ Microbiol. 2007 Nov;9(11):2670-82 [PMID: 17922752]
  12. Sci Total Environ. 2021 Apr 15;765:142700 [PMID: 33069481]
  13. Nature. 2009 Jan 22;457(7228):459-62 [PMID: 19158794]
  14. ISME J. 2012 Mar;6(3):692-702 [PMID: 21938020]
  15. Nucleic Acids Res. 2002 Jul 15;30(14):3059-66 [PMID: 12136088]
  16. FEMS Microbiol Ecol. 2013 Jul;85(1):128-42 [PMID: 23480659]
  17. Nat Methods. 2016 Jul;13(7):581-3 [PMID: 27214047]
  18. Microb Ecol. 2004 Oct;48(3):316-23 [PMID: 15692851]
  19. Nat Commun. 2014 May 20;5:3875 [PMID: 24846491]
  20. Front Microbiol. 2015 Feb 25;6:151 [PMID: 25762992]
  21. Microb Ecol. 2002 Nov;44(4):306-16 [PMID: 12399899]
  22. Appl Environ Microbiol. 2006 May;72(5):3685-95 [PMID: 16672518]
  23. Microb Ecol. 2006 May;51(4):413-21 [PMID: 16596438]
  24. Microb Ecol. 2010 Feb;59(2):335-43 [PMID: 19705192]
  25. Mar Drugs. 2020 Jun 02;18(6): [PMID: 32498449]
  26. PLoS One. 2010 Mar 10;5(3):e9490 [PMID: 20224823]
  27. Nature. 2016 Jul 20;535(7612):411-5 [PMID: 27443743]
  28. Microbiome. 2018 May 17;6(1):90 [PMID: 29773078]
  29. Nat Rev Microbiol. 2010 Feb;8(2):129-38 [PMID: 20075927]
  30. Mol Ecol. 2014 Sep;23(18):4631-44 [PMID: 25066007]
  31. Nature. 2017 Jul 6;547(7661):49-54 [PMID: 28658207]
  32. Nat Microbiol. 2019 Jun;4(6):925-932 [PMID: 30833723]
  33. Environ Microbiol. 2008 Jul;10(7):1713-24 [PMID: 18373679]
  34. Nat Biotechnol. 2019 Aug;37(8):852-857 [PMID: 31341288]
  35. FEMS Microbiol Lett. 2017 Mar 1;364(6): [PMID: 28333223]
  36. Environ Microbiol. 2016 May;18(5):1523-33 [PMID: 26914676]

Word Cloud

Created with Highcharts 10.0.0samplingsoilssoilcommunitiesdifferentmicrobiallocationsAntarcticcompositionscalecomparecommunitylocationalongASVssurfaceHoweverdecadesrelevantbacterialtop-stratumcmpointsPeninsulaheterogeneitydefinedsharedrepresentingsequencesCore80taxahomogeneityIce-freeareasrepresentless1%climatechangemodelspredictsignificantincreasetemperaturescomingtriggeringreductionice-coveredMicroorganismsadaptedextremefluctuatingconditionsdominantbiotaarticleanalyzediversity52samplesthreescales:finedifferences0-2deeper-stratum5-10pointiimediumwithiniiicoarsecomparableecosystemslocatedhundredskilometersapartresultssuggestice-freeexposedlongerperiodstimemillenniasignificantlyprofilesrecentlydeglaciatedprofileFurthermorefoundshowhighdegreeproportionuniqueampliconsequencevariantsASVappearedmainlylowabundancesingleCore9090%4composed26smallpercentagetotalNeverthelesstaxonomic80%persimilarmostly20common757%suggestinggreateramongdistantHeterogeneityMicrobialCommunitiesSoilsRegionAntarcticadistributionmicroorgamisms

Similar Articles

Cited By (13)