A deeper look into natural sciences with physics-based and data-driven measures.

Davi Röhe Rodrigues, Karin Everschor-Sitte, Susanne Gerber, Illia Horenko
Author Information
  1. Davi Röhe Rodrigues: Institute of Physics, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany.
  2. Karin Everschor-Sitte: Institute of Physics, Johannes Gutenberg University of Mainz, 55128 Mainz, Germany.
  3. Susanne Gerber: Institute of Human Genetics, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
  4. Illia Horenko: Università della Svizzera Italiana, Faculty of Informatics, Via G. Buffi 13, 6900 Lugano, Switzerland.

Abstract

With the development of machine learning in recent years, it is possible to glean much more information from an experimental data set to study matter. In this perspective, we discuss some state-of-the-art data-driven tools to analyze latent effects in data and explain their applicability in natural science, focusing on two recently introduced, physics-motivated computationally cheap tools-latent entropy and latent dimension. We exemplify their capabilities by applying them on several examples in the natural sciences and show that they reveal so far unobserved features such as, for example, a gradient in a magnetic measurement and a latent network of glymphatic channels from the mouse brain microscopy data. What sets these techniques apart is the relaxation of restrictive assumptions typical of many machine learning models and instead incorporating aspects that best fit the dynamical systems at hand.

Keywords

References

  1. Science. 2013 Jun 28;340(6140):1529-30 [PMID: 23812703]
  2. PLoS One. 2015 Oct 07;10(10):e0139931 [PMID: 26444880]
  3. Sci Transl Med. 2012 Aug 15;4(147):147ra111 [PMID: 22896675]
  4. Sci Adv. 2015 Aug 07;1(7):e1500163 [PMID: 26601225]
  5. Mol Ecol Resour. 2010 Sep;10(5):773-84 [PMID: 21565089]
  6. Genetics. 1994 Nov;138(3):913-41 [PMID: 7851785]
  7. Proc Natl Acad Sci U S A. 2015 Mar 31;112(13):E1569-76 [PMID: 25733874]
  8. Nat Nanotechnol. 2019 Jul;14(7):658-661 [PMID: 31011220]
  9. Sci Transl Med. 2012 Aug 15;4(147):147fs29 [PMID: 22896674]
  10. Gerontology. 2019;65(2):106-119 [PMID: 29996134]
  11. Sci Rep. 2018 Jan 29;8(1):1796 [PMID: 29379123]
  12. IEEE Trans Image Process. 2017 Jul;26(7):3142-3155 [PMID: 28166495]
  13. Neural Comput. 2020 Aug;32(8):1563-1579 [PMID: 32521216]
  14. Proc Natl Acad Sci U S A. 2017 May 9;114(19):4863-4868 [PMID: 28432182]
  15. BMC Bioinformatics. 2010 Jun 24;11:346 [PMID: 20576140]
  16. Nat Commun. 2015 Oct 07;6:8502 [PMID: 26443010]
  17. Nat Mach Intell. 2019 May;1(5):206-215 [PMID: 35603010]
  18. Nat Genet. 2015 Mar;47(3):284-90 [PMID: 25642633]
  19. Sci Adv. 2020 Jan 29;6(5):eaaw0961 [PMID: 32064328]
  20. IEEE Trans Cybern. 2014 Jul;44(7):1001-13 [PMID: 24002014]
  21. Psychol Methods. 2006 Mar;11(1):36-53 [PMID: 16594766]
  22. Phys Rev Lett. 2017 Oct 20;119(16):161101 [PMID: 29099225]
  23. Bioinformatics. 2016 Jun 1;32(11):1749-51 [PMID: 26826718]
  24. Bioinformatics. 2003 Oct;19 Suppl 2:ii215-25 [PMID: 14534192]
  25. IEEE Trans Med Imaging. 2004 Mar;23(3):374-87 [PMID: 15027530]
  26. IEEE Trans Image Process. 2011 Mar;20(3):696-708 [PMID: 20840902]
  27. Phys Rev B Condens Matter. 1994 Feb 1;49(6):3962-3971 [PMID: 10011291]
  28. IEEE Trans Image Process. 2008 Oct;17(10):1772-82 [PMID: 18784026]
  29. iScience. 2020 Oct 09;23(11):101656 [PMID: 33134890]
  30. IEEE Trans Image Process. 2007 Aug;16(8):2080-95 [PMID: 17688213]
  31. Science. 2006 Jul 28;313(5786):504-7 [PMID: 16873662]

Word Cloud

Created with Highcharts 10.0.0datalatentnaturalmachinelearningdata-drivensciencesPhysicsdevelopmentrecentyearspossiblegleanmuchinformationexperimentalsetstudymatterperspectivediscussstate-of-the-arttoolsanalyzeeffectsexplainapplicabilitysciencefocusingtworecentlyintroducedphysics-motivatedcomputationallycheaptools-latententropydimensionexemplifycapabilitiesapplyingseveralexamplesshowrevealfarunobservedfeaturesexamplegradientmagneticmeasurementnetworkglymphaticchannelsmousebrainmicroscopysetstechniquesapartrelaxationrestrictiveassumptionstypicalmanymodelsinsteadincorporatingaspectsbestfitdynamicalsystemshanddeeperlookphysics-basedmeasuresAppliedArtificialIntelligenceComputerScienceMagnetism

Similar Articles

Cited By