A novel non-invasive and echocardiography-derived method for quantification of right ventricular pressure-volume loops.
Manuel J Richter, Athiththan Yogeswaran, Faeq Husain-Syed, István Vadász, Zvonimir Rako, Emad Mohajerani, Hossein A Ghofrani, Robert Naeije, Werner Seeger, Ulrike Herberg, Andreas Rieth, Ryan J Tedford, Friedrich Grimminger, Henning Gall, Khodr Tello
Author Information
Manuel J Richter: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Athiththan Yogeswaran: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Faeq Husain-Syed: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
István Vadász: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Zvonimir Rako: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Emad Mohajerani: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Hossein A Ghofrani: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Robert Naeije: Erasme University Hospital, Route de Lennik 808, Brussels 1070, Belgium.
Werner Seeger: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Ulrike Herberg: Department of Pediatric Cardiology, University of Bonn, Building 30, Venusberg-Campus 1, Bonn 53127, Germany.
Andreas Rieth: Department of Thoracic Surgery, Kerckhoff Heart, Rheuma and Thoracic Center, Benekestr. 2-8, 61231 Bad Nauheim, Germany.
Ryan J Tedford: Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, SC, USA.
Friedrich Grimminger: Department of Internal Medicine, German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University Giessen, Aulweg 130, Giessen 35392, Germany.
Henning Gall: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
Khodr Tello: Department of Internal Medicine, Justus-Liebig-University Giessen, Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Klinikstrasse 32, Giessen 35392, Germany.
AIMS: We sought to assess the feasibility of constructing right ventricular (RV) pressure-volume (PV) loops solely by echocardiography. METHODS AND RESULTS: We performed RV conductance and pressure wire (PW) catheterization with simultaneous echocardiography in 35 patients with pulmonary hypertension. To generate echocardiographic PV loops, a reference RV pressure curve was constructed using pooled PW data from the first 20 patients (initial cohort). Individual pressure curves were then generated by adjusting the reference curve according to RV isovolumic and ejection phase duration and estimated RV systolic pressure. The pressure curves were synchronized with echocardiographic volume curves. We validated the reference curve in the remaining 15 patients (validation cohort). Methods were compared with correlation and Bland-Altman analysis. In the initial cohort, echocardiographic and conductance-derived PV loop parameters were significantly correlated {rho = 0.8053 [end-systolic elastance (Ees)], 0.8261 [Ees/arterial elastance (Ea)], and 0.697 (stroke work); all P < 0.001}, with low bias [-0.016 mmHg/mL (Ees), 0.1225 (Ees/Ea), and -39.0 mmHg mL (stroke work)] and acceptable limits of agreement. Echocardiographic and PW-derived Ees were also tightly correlated, with low bias (-0.009 mmHg/mL) and small limits of agreement. Echocardiographic and conductance-derived Ees, Ees/Ea, and stroke work were also tightly correlated in the validation cohort (rho = 0.9014, 0.9812, and 0.9491, respectively; all P < 0.001), with low bias (0.0173 mmHg/mL, 0.0153, and 255.1 mmHg mL, respectively) and acceptable limits. CONCLUSION: The novel echocardiographic method is an acceptable alternative to invasively measured PV loops to assess contractility, RV-arterial coupling, and RV myocardial work. Further validation is warranted.