Eccentric Cycling Training Improves Erythrocyte Antioxidant and Oxygen Releasing Capacity Associated with Enhanced Anaerobic Glycolysis and Intracellular Acidosis.

Yu-Chieh Huang, Mei-Ling Cheng, Hsiang-Yu Tang, Chi-Yao Huang, Kuan-Ming Chen, Jong-Shyan Wang
Author Information
  1. Yu-Chieh Huang: Department of Physical Therapy, College of Medical and Health Science, Asia University, Taichung 413, Taiwan. ORCID
  2. Mei-Ling Cheng: Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan. ORCID
  3. Hsiang-Yu Tang: Metabolomics Core Laboratory, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan. ORCID
  4. Chi-Yao Huang: Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, Taoyuan 333, Taiwan.
  5. Kuan-Ming Chen: Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, Taoyuan 333, Taiwan.
  6. Jong-Shyan Wang: Healthy Aging Research Center, Graduate Institute of Rehabilitation Science, Medical Collage, Chang Gung University, Taoyuan 333, Taiwan.

Abstract

The antioxidant capacity of erythrocytes protects individuals against the harmful effects of oxidative stress. Despite improved hemodynamic efficiency, the effect of eccentric cycling training (ECT) on erythrocyte antioxidative capacity remains unclear. This study investigates how ECT affects erythrocyte antioxidative capacity and metabolism in sedentary males. Thirty-six sedentary healthy males were randomly assigned to either concentric cycling training (CCT, = 12) or ECT ( = 12) at 60% of the maximal workload for 30 min/day, 5 days/week for 6 weeks or to a control group ( = 12) that did not receive an exercise intervention. A graded exercise test (GXT) was performed before and after the intervention. Erythrocyte metabolic characteristics and O release capacity were determined by UPLC-MS and high-resolution respirometry, respectively. An acute GXT depleted Glutathione (GSH), accumulated Glutathione disulfide (GSSG), and elevated the GSSG/GSH ratio, whereas both CCT and ECT attenuated the extent of the elevated GSSG/GSH ratio caused by a GXT. Moreover, the two exercise regimens upregulated glycolysis and increased glucose consumption and lactate production, leading to intracellular acidosis and facilitation of O release from erythrocytes. Both CCT and ECT enhance antioxidative capacity against severe exercise-evoked circulatory oxidative stress. Moreover, the two exercise regimens activate erythrocyte glycolysis, resulting in lowered intracellular pH and enhanced O released from erythrocytes.

Keywords

References

  1. Ther Drug Monit. 2001 Oct;23(5):542-9 [PMID: 11591901]
  2. Front Physiol. 2020 Jun 05;11:578 [PMID: 32581847]
  3. Cancers (Basel). 2011 Jan 20;3(1):408-14 [PMID: 24310355]
  4. Proc Natl Acad Sci U S A. 2020 May 5;117(18):10067-10078 [PMID: 32321831]
  5. Front Physiol. 2014 Feb 28;5:84 [PMID: 24616707]
  6. Free Radic Biol Med. 2013 Dec;65:1265-1272 [PMID: 24075894]
  7. Cell Calcium. 2016 Oct;60(4):235-44 [PMID: 27292137]
  8. Front Physiol. 2013 Nov 12;4:332 [PMID: 24273518]
  9. Free Radic Biol Med. 2017 Nov;112:360-375 [PMID: 28807817]
  10. Can J Physiol Pharmacol. 2018 Sep;96(9):953-962 [PMID: 29792821]
  11. Free Radic Biol Med. 2019 Sep;141:34-46 [PMID: 31163255]
  12. Redox Rep. 2007;12(3):109-18 [PMID: 17623517]
  13. Antioxid Redox Signal. 2015 Mar 20;22(9):744-59 [PMID: 25556665]
  14. J Physiol. 2020 Apr;598(8):1475-1490 [PMID: 31923331]
  15. PLoS One. 2013 Aug 16;8(8):e71060 [PMID: 24205395]
  16. J Sports Sci Med. 2008 Sep 01;7(3):344-9 [PMID: 24149901]
  17. Am J Physiol. 1999 Feb;276(2):R611-5 [PMID: 9950944]
  18. J Appl Physiol (1985). 1993 Feb;74(2):710-4 [PMID: 8458786]
  19. Cell Immunol. 1991 Aug;136(1):95-104 [PMID: 2060027]
  20. Scand J Med Sci Sports. 2015 Dec;25 Suppl 4:144-57 [PMID: 26589128]
  21. J Biol Chem. 2001 Mar 9;276(10):7004-10 [PMID: 11096069]
  22. Sports Med. 2017 May;47(5):917-941 [PMID: 27647157]
  23. Appl Physiol Nutr Metab. 2020 Nov;45(11):1232-1237 [PMID: 32413271]
  24. Metabolites. 2020 Jul 11;10(7): [PMID: 32664469]
  25. Comp Biochem Physiol B Biochem Mol Biol. 2015 Jul;185:54-61 [PMID: 25829149]
  26. FASEB J. 2009 Sep;23(9):3159-70 [PMID: 19417084]
  27. J Appl Physiol (1985). 1999 Dec;87(6):1997-2006 [PMID: 10601141]
  28. Redox Biol. 2015 Aug;5:381-387 [PMID: 26141922]
  29. Nat Chem Biol. 2017 Oct;13(10):1081-1087 [PMID: 28805803]
  30. Acta Physiol Scand. 2004 Nov;182(3):215-27 [PMID: 15491402]
  31. Eur J Appl Physiol. 2014 Apr;114(4):805-14 [PMID: 24390692]
  32. J Sports Sci. 1993 Dec;11(6):479-84 [PMID: 8114171]
  33. J Appl Physiol Respir Environ Exerc Physiol. 1983 Nov;55(5):1403-7 [PMID: 6643179]
  34. Eur J Appl Physiol. 2010 Dec;110(6):1225-33 [PMID: 20737166]
  35. Circ Heart Fail. 2010 Jul;3(4):486-94 [PMID: 20430934]
  36. Aging Dis. 2013 Sep 25;4(6):351-63 [PMID: 24307968]
  37. Eur J Appl Physiol. 2021 Feb;121(2):381-407 [PMID: 33180156]
  38. J Appl Physiol (1985). 1994 Apr;76(4):1462-7 [PMID: 8045820]
  39. J Lipid Res. 2012 Jul;53(7):1399-409 [PMID: 22517925]
  40. Oxid Med Cell Longev. 2019 Jan 13;2019:5913635 [PMID: 30755786]
  41. Antioxidants (Basel). 2018 Sep 05;7(9): [PMID: 30189660]
  42. Am J Physiol. 1992 Nov;263(5 Pt 2):R992-5 [PMID: 1443237]
  43. Am J Physiol Regul Integr Comp Physiol. 2004 Sep;287(3):R502-16 [PMID: 15308499]
  44. J Appl Physiol (1985). 2004 Jul;97(1):326-32 [PMID: 14966016]
  45. Eur J Appl Physiol. 2019 Oct;119(10):2301-2312 [PMID: 31451954]
  46. Genet Mol Res. 2015 Oct 16;14(4):12367-76 [PMID: 26505386]
  47. Front Physiol. 2019 May 03;10:536 [PMID: 31130877]
  48. Scand J Med Sci Sports. 2019 Jan;29(1):4-15 [PMID: 30222208]
  49. Respir Physiol. 1991 Aug;85(2):231-43 [PMID: 1947461]
  50. Med Sci Sports Exerc. 2016 Jan;48(1):57-65 [PMID: 26672920]
  51. Respir Physiol. 1979 Oct;38(2):115-29 [PMID: 41298]
  52. J Sports Med Phys Fitness. 1997 Dec;37(4):235-9 [PMID: 9509820]
  53. Eur J Appl Physiol Occup Physiol. 1986;55(2):174-80 [PMID: 3699004]
  54. Redox Rep. 1999;4(1-2):53-9 [PMID: 10714277]
  55. J Appl Physiol (1985). 2017 Jun 1;122(6):1418-1424 [PMID: 28302709]

Word Cloud

Created with Highcharts 10.0.0capacityECTexerciseerythrocyteerythrocytesantioxidativeCCT=12GXTOoxidativestresseccentriccyclingtrainingmetabolismsedentarymalesinterventionErythrocytereleaseGlutathioneelevatedGSSG/GSHratioMoreovertworegimensglycolysisintracellularantioxidantprotectsindividualsharmfuleffectsDespiteimprovedhemodynamicefficiencyeffectremainsunclearstudyinvestigatesaffectsThirty-sixhealthyrandomlyassignedeitherconcentric60%maximalworkload30min/day5days/week6weekscontrolgroupreceivegradedtestperformedmetaboliccharacteristicsdeterminedUPLC-MShigh-resolutionrespirometryrespectivelyacutedepletedGSHaccumulateddisulfideGSSGwhereasattenuatedextentcausedupregulatedincreasedglucoseconsumptionlactateproductionleadingacidosisfacilitationenhancesevereexercise-evokedcirculatoryactivateresultingloweredpHenhancedreleasedEccentricCyclingTrainingImprovesAntioxidantOxygenReleasingCapacityAssociatedEnhancedAnaerobicGlycolysisIntracellularAcidosisredoxstatus

Similar Articles

Cited By