Embryonic Environmental Niche Reprograms Somatic Cells to Express Pluripotency Markers and Participate in Adult Chimaeras.

Krystyna Żyżyńska-Galeńska, Agnieszka Bernat, Anna Piliszek, Jolanta Karasiewicz, Ewa Szablisty, Mariusz Sacharczuk, Marta Brewińska-Olchowik, Michał Bochenek, Joanna Grabarek, Jacek Andrzej Modliński
Author Information
  1. Krystyna Żyżyńska-Galeńska: Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec,05-552 Magdalenka, Poland.
  2. Agnieszka Bernat: Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec,05-552 Magdalenka, Poland. ORCID
  3. Anna Piliszek: Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec,05-552 Magdalenka, Poland. ORCID
  4. Jolanta Karasiewicz: Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec,05-552 Magdalenka, Poland.
  5. Ewa Szablisty: Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec,05-552 Magdalenka, Poland.
  6. Mariusz Sacharczuk: Department of Experimental Genomics, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec, 05-552 Magdalenka, Poland. ORCID
  7. Marta Brewińska-Olchowik: Laboratory of Cytometry, Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland.
  8. Michał Bochenek: Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, 32-083 Balice, Poland.
  9. Joanna Grabarek: Faculty of Biology, Medicine and Health, Division of Developmental Biology & Medicine, University of Manchester, Manchester M13 9PT, UK.
  10. Jacek Andrzej Modliński: Department of Experimental Embryology, Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, Jastrzębiec,05-552 Magdalenka, Poland.

Abstract

The phenomenon of the reprogramming of terminally differentiated cells can be achieved by various means, like somatic cell nuclear transfer, cell fusion with a pluripotent cell, or the introduction of pluripotency genes. Here, we present the evidence that somatic cells can attain the expression of pluripotency markers after their introduction into early embryos. Mouse embryonic fibroblasts introduced between blastomeres of cleaving embryos, within two days of in vitro culture, express transcription factors specific to blastocyst lineages, including pluripotency factors. Analysis of donor tissue marker DNA has revealed that the progeny of introduced cells are found in somatic tissues of foetuses and adult chimaeras, providing evidence for cell reprogramming. Analysis of ploidy has shown that in the chimaeras, the progeny of introduced cells are either diploid or tetraploid, the latter indicating cell fusion. The presence of donor DNA in diploid cells from chimaeric embryos proved that the non-fused progeny of introduced fibroblasts persisted in chimaeras, which is evidence of reprogramming by embryonic niche. When adult somatic (cumulus) cells were introduced into early cleavage embryos, the extent of integration was limited and only cell fusion-mediated reprogramming was observed. These results show that both cell fusion and cell interactions with the embryonic niche reprogrammed somatic cells towards pluripotency.

Keywords

References

  1. Reproduction. 2007 Jan;133(1):207-18 [PMID: 17244747]
  2. Stem Cell Rev. 2006;2(4):309-17 [PMID: 17848718]
  3. Methods Enzymol. 1993;225:823-55 [PMID: 8231889]
  4. Stem Cell Reports. 2021 Jan 12;16(1):56-74 [PMID: 33382978]
  5. Cell. 2003 May 30;113(5):631-42 [PMID: 12787504]
  6. BMC Biotechnol. 2004 Dec 24;4:33 [PMID: 15619330]
  7. Development. 2012 Jan;139(1):129-39 [PMID: 22096072]
  8. Nature. 1998 Jul 23;394(6691):369-74 [PMID: 9690471]
  9. Cell. 1998 Jun 12;93(6):1055-65 [PMID: 9635434]
  10. Immunol Today. 1998 May;19(5):236-41 [PMID: 9613042]
  11. Nature. 1996 Mar 7;380(6569):64-6 [PMID: 8598906]
  12. Mol Cell Biol. 2003 Jun;23(11):4013-25 [PMID: 12748302]
  13. Cell. 2009 Feb 6;136(3):411-9 [PMID: 19203577]
  14. Cell. 1976 Sep;9(1):45-55 [PMID: 61820]
  15. Nature. 1966 Jun 18;210(5042):1240-1 [PMID: 5967799]
  16. Dev Dyn. 1995 Nov;204(3):219-27 [PMID: 8573715]
  17. Cell Stem Cell. 2008 Nov 6;3(5):568-74 [PMID: 18983970]
  18. Cell. 2006 Aug 25;126(4):663-76 [PMID: 16904174]
  19. Science. 2000 Jun 2;288(5471):1660-3 [PMID: 10834848]
  20. Cell Stem Cell. 2016 Nov 3;19(5):587-592 [PMID: 27814480]
  21. J Exp Zool. 1972 Aug;181(2):181-91 [PMID: 5047359]
  22. Cell Stem Cell. 2007 Jun 7;1(1):55-70 [PMID: 18371336]
  23. Proc Natl Acad Sci U S A. 1955 May 15;41(5):321-5 [PMID: 16589674]
  24. Nature. 2007 Jul 19;448(7151):318-24 [PMID: 17554336]
  25. FEBS Lett. 1997 Dec 15;419(2-3):239-43 [PMID: 9428642]
  26. Dev Biol. 2008 Oct 1;322(1):133-44 [PMID: 18692038]
  27. Arterioscler Thromb Vasc Biol. 2010 Oct;30(10):1905-7 [PMID: 20689077]
  28. Nature. 1984 May 17-23;309(5965):255-6 [PMID: 6717601]
  29. Nucleic Acids Res. 2006 Mar 17;34(5):e42 [PMID: 16547197]
  30. J Cell Sci. 1985 Feb;73:221-34 [PMID: 4019593]
  31. Stem Cells. 2009 Dec;27(12):2969-78 [PMID: 19816951]
  32. Am J Physiol Heart Circ Physiol. 2001 Nov;281(5):H1938-45 [PMID: 11668054]
  33. Sci Rep. 2014 Jul 03;4:5515 [PMID: 24992450]
  34. Development. 2008 Sep;135(18):3081-91 [PMID: 18725515]
  35. Genesis. 2006 Apr;44(4):202-18 [PMID: 16604528]
  36. Dev Biol. 2005 Dec 1;288(1):150-9 [PMID: 16246322]
  37. Curr Biol. 2001 Oct 2;11(19):1553-8 [PMID: 11591326]
  38. J Embryol Exp Morphol. 1962 Dec;10:622-40 [PMID: 13951335]
  39. Development. 2009 Feb;136(4):509-23 [PMID: 19168672]
  40. Proc Natl Acad Sci U S A. 1952 May;38(5):455-63 [PMID: 16589125]
  41. Genesis. 2004 Dec;40(4):241-6 [PMID: 15593332]
  42. Nature. 1997 Feb 27;385(6619):810-3 [PMID: 9039911]
  43. Oncogene. 2009 Mar 5;28(9):1197-205 [PMID: 19137014]
  44. J Vis Exp. 2012 May 30;(63): [PMID: 22688536]
  45. Mol Biol Cell. 2005 Dec;16(12):5719-35 [PMID: 16195347]
  46. Development. 1994 Mar;120(3):613-20 [PMID: 8162859]
  47. J Embryol Exp Morphol. 1985 Aug;88:349-63 [PMID: 4078538]
  48. Cloning Stem Cells. 2002;4(4):379-87 [PMID: 12626101]
  49. Reprod Biomed Online. 2006 Jun;12(6):762-70 [PMID: 16792855]
  50. Science. 2008 Nov 7;322(5903):949-53 [PMID: 18845712]
  51. Dev Biol. 1980 May;76(2):475-82 [PMID: 6893035]
  52. Cancer Res. 2003 May 1;63(9):2244-50 [PMID: 12727846]
  53. Blood Cells Mol Dis. 2004 Jan-Feb;32(1):65-7 [PMID: 14757415]
  54. Cell. 1997 Feb 7;88(3):287-98 [PMID: 9039255]
  55. Differentiation. 1997 Oct;62(1):1-11 [PMID: 9373942]
  56. BMC Biotechnol. 2005 Jul 04;5:20 [PMID: 15996270]
  57. Development. 2005 May;132(9):2093-102 [PMID: 15788452]
  58. Science. 2007 Dec 21;318(5858):1917-20 [PMID: 18029452]
  59. Development. 1990 Nov;110(3):815-21 [PMID: 2088722]
  60. Int J Dev Biol. 2008;52(2-3):315-22 [PMID: 18311723]
  61. Neuron. 1996 Jul;17(1):55-61 [PMID: 8755478]
  62. Nature. 2004 Jul 15;430(6997):350-6 [PMID: 15254537]
  63. Cell Stem Cell. 2017 Oct 5;21(4):449-455.e4 [PMID: 28985526]
  64. Arch Otolaryngol Head Neck Surg. 1999 Jun;125(6):676-80 [PMID: 10367926]
  65. Cell. 2003 May 30;113(5):643-55 [PMID: 12787505]

Grants

  1. DEC-2012/05/N/NZ3/02325/Narodowe Centrum Nauki
  2. ANIMBIOGEN in EU/European Community research funding (FP7)
  3. Nr N303 100 32/3418/Ministerstwo Nauki i Szkolnictwa Wyższego

MeSH Term

Aging
Animals
Biomarkers
Blastocyst
Blastomeres
Cell Fusion
Cell Line
Cellular Reprogramming
Chimera
Cumulus Cells
Diploidy
Embryo Culture Techniques
Embryo, Mammalian
Embryonic Development
Female
Fetus
Fluorescent Dyes
Mice
Morula
Pluripotent Stem Cells
Pregnancy
Tetraploidy

Chemicals

Biomarkers
Fluorescent Dyes

Word Cloud

Created with Highcharts 10.0.0cellcellsreprogrammingsomaticintroducedpluripotencyembryosembryonicfusionevidenceprogenychimaerasnichecanintroductionearlyfibroblastsfactorsAnalysisdonorDNAadultdiploidphenomenonterminallydifferentiatedachievedvariousmeanslikenucleartransferpluripotentgenespresentattainexpressionmarkersMouseblastomerescleavingwithintwodaysvitrocultureexpresstranscriptionspecificblastocystlineagesincludingtissuemarkerrevealedfoundtissuesfoetusesprovidingploidyshowneithertetraploidlatterindicatingpresencechimaericprovednon-fusedpersistedcumuluscleavageextentintegrationlimitedfusion-mediatedobservedresultsshowinteractionsreprogrammedtowardsEmbryonicEnvironmentalNicheReprogramsSomaticCellsExpressPluripotencyMarkersParticipateAdultChimaeraschimaeraplasticity

Similar Articles

Cited By