Textile Materials Modified with Stimuli-Responsive Drug Carrier for Skin Topical and Transdermal Delivery.

Daniela Atanasova, Desislava Staneva, Ivo Grabchev
Author Information
  1. Daniela Atanasova: Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
  2. Desislava Staneva: Department of Textile and Leathers, University of Chemical Technology and Metallurgy, 1756 Sofia, Bulgaria.
  3. Ivo Grabchev: Faculty of Medicine, Sofia University "St. Kliment Ohridski", 1407 Sofia, Bulgaria. ORCID

Abstract

Textile materials, as a suitable matrix for different active substances facilitating their gradual release, can have an important role in skin topical or transdermal therapy. Characterized by compositional and structural variety, those materials readily meet the requirements for applications in specific therapies. Aromatherapy, antimicrobial substances and painkillers, hormone therapy, psoriasis treatment, atopic dermatitis, melanoma, etc., are some of the areas where textiles can be used as carriers. There are versatile optional methods for loading the biologically active substances onto textile materials. The oldest ones are by exhaustion, spraying, and a pad-dry-cure method. Another widespread method is the microencapsulation. The modification of textile materials with stimuli-responsive polymers is a perspective route to obtaining new textiles of improved multifunctional properties and intelligent response. In recent years, research has focused on new structures such as dendrimers, polymer micelles, liposomes, polymer nanoparticles, and hydrogels. Numerous functional groups and the ability to encapsulate different substances define dendrimer molecules as promising carriers for drug delivery. Hydrogels are also high molecular hydrophilic structures that can be used to modify textile material. They absorb a large amount of water or biological fluids and can support the delivery of medicines. These characteristics correspond to one of the current trends in the development of materials used in transdermal therapy, namely production of intelligent materials, i.e., such that allow controlled concentration and time delivery of the active substance and simultaneous visualization of the process, which can only be achieved with appropriate and purposeful modification of the textile material.

Keywords

References

  1. Eur J Pharm Biopharm. 2000 Jul;50(1):27-46 [PMID: 10840191]
  2. J Control Release. 2014 Sep 28;190:150-6 [PMID: 24852092]
  3. Adv Mater. 2018 Jun 11;:e1706910 [PMID: 29893068]
  4. Eur J Pharm Sci. 2017 Jan 15;97:113-134 [PMID: 27864064]
  5. Adv Drug Deliv Rev. 2018 Apr;129:169-193 [PMID: 29501700]
  6. Nat Mater. 2010 Feb;9(2):101-13 [PMID: 20094081]
  7. J Invest Dermatol. 1983 Jun;80(1 Suppl):44s-9s [PMID: 20479733]
  8. Biomedicine (Taipei). 2015 Dec;5(4):22 [PMID: 26615539]
  9. Biomacromolecules. 2012 Jul 9;13(7):2154-62 [PMID: 22621160]
  10. J Nutr Biochem. 2014 Apr;25(4):363-76 [PMID: 24406273]
  11. Biomacromolecules. 2014 Dec 8;15(12):4377-95 [PMID: 25320910]
  12. Drug Des Devel Ther. 2009 Feb 06;2:193-202 [PMID: 19920906]
  13. Breathe (Sheff). 2014 Sep;10(3):198-212 [PMID: 26843894]
  14. Eur J Pharm Sci. 2015 Oct 12;78:67-78 [PMID: 26159739]
  15. Burns. 2006 Sep;32(6):698-705 [PMID: 16837138]
  16. AAPS PharmSciTech. 2010 Sep;11(3):1092-103 [PMID: 20607628]
  17. Pharmaceutics. 2019 Nov 08;11(11): [PMID: 31717376]
  18. Eur J Pharm Sci. 2009 Feb 15;36(2-3):310-9 [PMID: 19022379]
  19. Polymers (Basel). 2018 Nov 29;10(12): [PMID: 30961250]
  20. Adv Drug Deliv Rev. 2002 Nov 1;54 Suppl 1:S31-40 [PMID: 12460714]
  21. J Mater Chem B. 2017 Nov 28;5(44):8653-8675 [PMID: 32264260]
  22. Molecules. 2019 Mar 21;24(6): [PMID: 30901827]
  23. J Liposome Res. 2008;18(3):249-62 [PMID: 18770074]
  24. J Control Release. 2003 Jul 31;90(3):335-43 [PMID: 12880700]
  25. Expert Opin Drug Deliv. 2014 Mar;11(3):393-407 [PMID: 24392787]
  26. Polymers (Basel). 2020 Jun 22;12(6): [PMID: 32580366]
  27. J Funct Biomater. 2017 Dec 24;9(1): [PMID: 29295545]
  28. Nanotechnol Rev. 2018 Feb;7(1):95-122 [PMID: 29404233]
  29. J Pharm Sci. 2007 Mar;96(3):595-602 [PMID: 17094130]
  30. Adv Drug Deliv Rev. 2008 Jun 10;60(9):1037-55 [PMID: 18448187]
  31. J Biomed Mater Res B Appl Biomater. 2008 Jan;84(1):165-75 [PMID: 17455282]
  32. Eur J Pharm Sci. 2003 Dec;20(4-5):429-38 [PMID: 14659487]
  33. Sensors (Basel). 2021 Jan 14;21(2): [PMID: 33466632]
  34. Eur Cell Mater. 2011 Jul 15;22:43-55; discussion 55 [PMID: 21761391]
  35. Artif Cells Nanomed Biotechnol. 2019 Dec;47(1):1476-1487 [PMID: 31070063]
  36. Macromol Biosci. 2006 Sep 15;6(9):767-75 [PMID: 16967480]
  37. Biomater Sci. 2020 Jul 7;8(13):3574-3600 [PMID: 32555780]
  38. Prog Biomater. 2017 May;6(1-2):13-26 [PMID: 28303522]
  39. Exp Dermatol. 2002 Oct;11(5):398-405 [PMID: 12366692]
  40. Sci Rep. 2016 Apr 19;6:24112 [PMID: 27090158]
  41. Eur J Pharm Biopharm. 2015 Nov;97(Pt A):90-5 [PMID: 26493713]
  42. Materials (Basel). 2019 Dec 21;13(1): [PMID: 31877717]
  43. Adv Drug Deliv Rev. 2018 Mar 1;127:138-166 [PMID: 29626550]
  44. Wound Repair Regen. 2012 Nov-Dec;20(6):904-10 [PMID: 23110551]
  45. Handb Exp Pharmacol. 2010;(197):435-68 [PMID: 20217539]
  46. Int J Pharm. 2013 Feb 28;444(1-2):96-102 [PMID: 23352858]
  47. Carbohydr Polym. 2016 May 20;142:24-30 [PMID: 26917369]
  48. Int J Pharm. 2009 Jul 30;377(1-2):112-9 [PMID: 19446618]
  49. Molecules. 2019 Jul 12;24(14): [PMID: 31336916]
  50. Sensors (Basel). 2021 Jan 09;21(2): [PMID: 33435515]
  51. Pharmaceutics. 2019 Aug 11;11(8): [PMID: 31405229]
  52. J Invest Dermatol. 1999 Sep;113(3):403-9 [PMID: 10469341]
  53. Pharmaceutics. 2015 Oct 22;7(4):438-70 [PMID: 26506371]
  54. Biomater Sci. 2016 Mar;4(3):375-90 [PMID: 26806314]
  55. J Pharm Sci. 2008 Aug;97(8):2892-923 [PMID: 17963217]
  56. Chem Biol. 2003 Dec;10(12):1161-71 [PMID: 14700624]
  57. Drug Deliv. 2016 Oct;23(8):2946-2955 [PMID: 26926323]
  58. J Microencapsul. 2011;28(8):799-806 [PMID: 21970657]
  59. Mater Sci Eng C Mater Biol Appl. 2013 Jan 1;33(1):72-7 [PMID: 25428045]
  60. Molecules. 2016 Dec 15;21(12): [PMID: 27983701]
  61. Br J Pharmacol. 2015 May;172(9):2179-209 [PMID: 25560046]
  62. Biomaterials. 2002 Nov;23(22):4307-14 [PMID: 12219820]
  63. Eur J Pharm Biopharm. 2003 Nov;56(3):407-12 [PMID: 14602184]
  64. Int J Pharm. 2006 Dec 1;326(1-2):20-4 [PMID: 16920284]
  65. Cell Mol Biol Lett. 2002;7(2):224-5 [PMID: 12097924]
  66. Materials (Basel). 2019 Oct 17;12(20): [PMID: 31627362]
  67. Curr Drug Deliv. 2019;16(5):444-460 [PMID: 30714524]
  68. J Control Release. 2017 Feb 10;247:86-105 [PMID: 28024914]
  69. Adv Drug Deliv Rev. 2001 Mar 23;47(1):113-31 [PMID: 11251249]

Grants

  1. КП-06-КОСТ-23/Bulgarian National Science Fund

Word Cloud

Created with Highcharts 10.0.0materialscantextilesubstancestherapydeliveryactivetransdermalusedpolymerTextiledifferenttextilescarriersmethodmodificationstimuli-responsivenewintelligentstructuresdrugmaterialsuitablematrixfacilitatinggradualreleaseimportantroleskintopicalCharacterizedcompositionalstructuralvarietyreadilymeetrequirementsapplicationsspecifictherapiesAromatherapyantimicrobialpainkillershormonepsoriasistreatmentatopicdermatitismelanomaetcareasversatileoptionalmethodsloadingbiologicallyontooldestonesexhaustionsprayingpad-dry-cureAnotherwidespreadmicroencapsulationpolymersperspectiverouteobtainingimprovedmultifunctionalpropertiesresponserecentyearsresearchfocuseddendrimersmicellesliposomesnanoparticleshydrogelsNumerousfunctionalgroupsabilityencapsulatedefinedendrimermoleculespromisingHydrogelsalsohighmolecularhydrophilicmodifyabsorblargeamountwaterbiologicalfluidssupportmedicinescharacteristicscorrespondonecurrenttrendsdevelopmentnamelyproductionieallowcontrolledconcentrationtimesubstancesimultaneousvisualizationprocessachievedappropriatepurposefulMaterialsModifiedStimuli-ResponsiveDrugCarrierSkinTopicalTransdermalDeliverysmart

Similar Articles

Cited By