Population Genomics of American Mink Using Whole Genome Sequencing Data.

Karim Karimi, Duy Ngoc Do, Mehdi Sargolzaei, Younes Miar
Author Information
  1. Karim Karimi: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada.
  2. Duy Ngoc Do: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada. ORCID
  3. Mehdi Sargolzaei: Department of Pathobiology, University of Guelph, Guelph, ON N1G 2W1, Canada.
  4. Younes Miar: Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada. ORCID

Abstract

Characterizing the genetic structure and population history can facilitate the development of genomic breeding strategies for the American mink. In this study, we used the whole genome sequences of 100 mink from the Canadian Centre for Fur Animal Research (CCFAR) at the Dalhousie Faculty of Agriculture (Truro, NS, Canada) and Millbank Fur Farm (Rockwood, ON, Canada) to investigate their population structure, genetic diversity and linkage disequilibrium (LD) patterns. Analysis of molecular variance (AMOVA) indicated that the variation among color-types was significant ( < 0.001) and accounted for 18% of the total variation. The admixture analysis revealed that assuming three ancestral populations (K = 3) provided the lowest cross-validation error (0.49). The effective population size () at five generations ago was estimated to be 99 and 50 for CCFAR and Millbank Fur Farm, respectively. The LD patterns revealed that the average reduced to <0.2 at genomic distances of >20 kb and >100 kb in CCFAR and Millbank Fur Farm suggesting that the density of 120,000 and 24,000 single nucleotide polymorphisms (SNP) would provide the adequate accuracy of genomic evaluation in these populations, respectively. These results indicated that accounting for admixture is critical for designing the SNP panels for genotype-phenotype association studies of American mink.

Keywords

References

  1. J Anim Sci. 1994 May;72(5):1126-37 [PMID: 8056657]
  2. J Anim Sci. 2015 Aug;93(8):3773-82 [PMID: 26440156]
  3. Am J Hum Genet. 2000 Oct;67(4):926-35 [PMID: 10961910]
  4. Front Genet. 2020 Mar 13;11:223 [PMID: 32231688]
  5. Genomics. 2019 Mar;111(2):186-195 [PMID: 29427639]
  6. Genetics. 1994 May;137(1):331-6 [PMID: 8056320]
  7. Genet Sel Evol. 2018 Nov 19;50(1):58 [PMID: 30449284]
  8. PLoS Biol. 2012 Feb;10(2):e1001258 [PMID: 22346734]
  9. Gigascience. 2018 Jan 1;7(1):1-6 [PMID: 29220494]
  10. PLoS Comput Biol. 2012;8(12):e1002822 [PMID: 23300413]
  11. Heredity (Edinb). 2016 Oct;117(4):207-16 [PMID: 27165767]
  12. J Anim Breed Genet. 2013 Aug;130(4):286-93 [PMID: 23855630]
  13. Science. 2009 Apr 24;324(5926):528-32 [PMID: 19390050]
  14. BMC Genet. 2016 Jul 15;17(1):108 [PMID: 27418004]
  15. Theor Popul Biol. 1971 Jun;2(2):125-41 [PMID: 5170716]
  16. Heredity (Edinb). 2016 Oct;117(4):233-40 [PMID: 27553452]
  17. J Anim Sci. 2018 Jun 29;96(7):2596-2606 [PMID: 29726960]
  18. BMC Genet. 2018 Nov 12;19(1):103 [PMID: 30419805]
  19. Genome Res. 2003 Apr;13(4):635-43 [PMID: 12654718]
  20. Animals (Basel). 2019 Dec 20;10(1): [PMID: 31877627]
  21. Animal. 2020 May;14(5):910-920 [PMID: 31928538]
  22. Am J Hum Genet. 2008 Sep;83(3):359-72 [PMID: 18760389]
  23. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1940-4 [PMID: 16593171]
  24. BMC Genomics. 2008 Apr 24;9:187 [PMID: 18435834]
  25. Genet Sel Evol. 2006 Jul-Aug;38(4):371-87 [PMID: 16790228]
  26. BMC Genet. 2020 Feb 26;21(1):21 [PMID: 32102657]
  27. J Anim Sci. 2010 Jan;88(1):32-46 [PMID: 19749023]
  28. Nat Rev Genet. 2002 Apr;3(4):299-309 [PMID: 11967554]
  29. BMC Genet. 2015 Jul 22;16:88 [PMID: 26195126]
  30. Front Genet. 2019 Aug 16;10:667 [PMID: 31475027]
  31. PLoS One. 2019 Mar 14;14(3):e0213873 [PMID: 30870528]
  32. PLoS Biol. 2006 Mar;4(3):e72 [PMID: 16494531]
  33. Nat Rev Genet. 2008 Jun;9(6):477-85 [PMID: 18427557]
  34. Am J Hum Genet. 2012 Aug 10;91(2):275-92 [PMID: 22883143]
  35. Sci Rep. 2017 Nov 6;7(1):14564 [PMID: 29109430]
  36. Nat Rev Genet. 2011 Jun 17;12(7):499-510 [PMID: 21681211]
  37. Theor Appl Genet. 1968 Jun;38(6):226-31 [PMID: 24442307]
  38. J Dairy Sci. 2017 Aug;100(8):6009-6024 [PMID: 28601448]
  39. Bioinformatics. 2011 Nov 1;27(21):3070-1 [PMID: 21926124]
  40. BMC Bioinformatics. 2012 Feb 09;13:28 [PMID: 22321652]
  41. Genetics. 2001 Apr;157(4):1819-29 [PMID: 11290733]
  42. Genome Res. 2007 Feb;17(2):219-30 [PMID: 17185644]
  43. Nat Rev Genet. 2009 Jun;10(6):381-91 [PMID: 19448663]
  44. PLoS One. 2015 Apr 16;10(4):e0124157 [PMID: 25880228]
  45. Genetics. 1992 Jun;131(2):479-91 [PMID: 1644282]
  46. BMC Genet. 2015 Jun 25;16:67 [PMID: 26108536]
  47. BMC Genet. 2010 Oct 15;11:94 [PMID: 20950446]
  48. Animal. 2016 May;10(5):746-54 [PMID: 27076405]
  49. Animals (Basel). 2020 Sep 22;10(9): [PMID: 32971980]
  50. Hum Genet. 2005 Nov;118(2):276-86 [PMID: 16184404]
  51. Front Genet. 2014 Nov 21;5:402 [PMID: 25484890]
  52. J Anim Sci. 2013 Jul;91(7):3105-12 [PMID: 23658363]
  53. Genetics. 1973 Sep;75(1):213-9 [PMID: 4762877]
  54. Mol Biol Evol. 2015 Feb;32(2):495-509 [PMID: 25415966]
  55. Anim Genet. 2008 Apr;39(2):97-104 [PMID: 18307581]
  56. Annu Rev Anim Biosci. 2017 Feb 8;5:309-327 [PMID: 27860491]
  57. BMC Genomics. 2011 Sep 23;12:460 [PMID: 21943305]
  58. Genome Res. 2009 Sep;19(9):1655-64 [PMID: 19648217]
  59. Evolution. 1984 Nov;38(6):1358-1370 [PMID: 28563791]
  60. PLoS One. 2016 Jun 22;11(6):e0157972 [PMID: 27333328]
  61. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  62. Front Genet. 2020 Jan 17;10:1304 [PMID: 32010183]
  63. Asian-Australas J Anim Sci. 2014 Sep;27(9):1263-9 [PMID: 25178369]
  64. Am J Hum Genet. 2001 Jan;68(1):198-207 [PMID: 11112661]
  65. Mol Ecol Resour. 2013 Sep;13(5):946-52 [PMID: 23738873]
  66. PLoS One. 2013 Dec 12;8(12):e80754 [PMID: 24349013]
  67. Nature. 2001 May 10;411(6834):199-204 [PMID: 11346797]

MeSH Term

Animals
Genome
Metagenomics
Mink
Polymorphism, Single Nucleotide
Whole Genome Sequencing

Word Cloud

Created with Highcharts 10.0.0populationAmericanminkFurstructuregenomicCCFARMillbankFarmgeneticwholegenomeCanadalinkagedisequilibriumLDpatternsindicatedvariation0admixturerevealedpopulationsrespectivelykb000SNPCharacterizinghistorycanfacilitatedevelopmentbreedingstrategiesstudyusedsequences100CanadianCentreAnimalResearchDalhousieFacultyAgricultureTruroNSRockwoodONinvestigatediversityAnalysismolecularvarianceAMOVAamongcolor-typessignificant<001accounted18%totalanalysisassumingthreeancestralK=3providedlowestcross-validationerror49effectivesizefivegenerationsagoestimated9950averagereduced<02distances>20>100suggestingdensity12024singlenucleotidepolymorphismsprovideadequateaccuracyevaluationresultsaccountingcriticaldesigningpanelsgenotype-phenotypeassociationstudiesPopulationGenomicsMinkUsingWholeGenomeSequencingDatasequencing

Similar Articles

Cited By (8)