Personal Exposure Assessment to Wi-Fi Radiofrequency Electromagnetic Fields in Mexican Microenvironments.

Raquel Ramirez-Vazquez, Jesus Gonzalez-Rubio, Isabel Escobar, Carmen Del Pilar Suarez Rodriguez, Enrique Arribas
Author Information
  1. Raquel Ramirez-Vazquez: Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain. ORCID
  2. Jesus Gonzalez-Rubio: Medical Science Department, School of Medicine, University of Castilla-La Mancha, C/Almansa 14, 02071 Albacete, Spain. ORCID
  3. Isabel Escobar: Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain. ORCID
  4. Carmen Del Pilar Suarez Rodriguez: Department of Mechanical Engineering, Autonomous University of San Luis Potosi, Academic Coordination of the Huasteca South Region, Tamazunchale, San Luis Potosi 79960, Mexico. ORCID
  5. Enrique Arribas: Applied Physics Department, Faculty of Computer Science Engineering, University of Castilla-La Mancha, Avda. de España s/n, Campus Universitario, 02071 Albacete, Spain. ORCID

Abstract

In recent years, personal exposure to Radiofrequency Electromagnetic Fields (RF-EMF) has substantially increased, and most studies about RF-EMF with volunteers have been developed in Europe. To the best of our knowledge, this is the first study carried out in Mexico with personal exposimeters. The main objective was to measure personal exposure to RF-EMF from Wireless Fidelity or wireless Internet connection (Wi-Fi) frequency bands in Tamazunchale, San Luis Potosi, Mexico, to compare results with maximum levels permitted by international recommendations and to find if there are differences in the microenvironments subject to measurements. The study was conducted with 63 volunteers in different microenvironments: home, workplace, outside, schools, travel, and shopping. The mean minimum values registered were 146.5 μW/m in travel from the Wi-Fi 2G band and 116.8 μW/m at home from the Wi-Fi 5G band, and the maximum values registered were 499.7 μW/m and 264.9 μW/m at the workplace for the Wi-Fi 2G band and the Wi-Fi 5G band, respectively. In addition, by time period and type of day, minimum values were registered at nighttime, these values being 129.4 μW/m and 93.9 μW/m, and maximum values were registered in the daytime, these values being 303.1 μW/m and 168.3 μW/m for the Wi-Fi 2G and Wi-Fi 5G bands, respectively. In no case, values exceeded limits established by the International Commission on Non-Ionizing Radiation Protection (ICNIRP). Of the study participants ( = 63), a subgroup ( = 35) answered a survey on risk perception. According to these results, the Tamazunchale (Mexico) population is worried about this situation in comparison with several European cities; however, the risk perception changes when they are informed about the results for the study.

Keywords

References

  1. Environ Int. 2017 Feb;99:303-314 [PMID: 28038972]
  2. Health Phys. 1998 Apr;74(4):494-522 [PMID: 9525427]
  3. Health Phys. 2013 Mar;104(3):293-301 [PMID: 23361425]
  4. Health Phys. 2008 Sep;95(3):317-30 [PMID: 18695413]
  5. Environ Res. 2016 Aug;149:105-112 [PMID: 27196609]
  6. Bioelectromagnetics. 2010 May;31(4):286-95 [PMID: 20041435]
  7. Environ Health. 2018 Apr 12;17(1):36 [PMID: 29650009]
  8. J Environ Public Health. 2015;2015:198272 [PMID: 26229540]
  9. Environ Res. 2018 Nov;167:639 [PMID: 30173116]
  10. Risk Anal. 2010 Jun;30(6):1002-15 [PMID: 20409037]
  11. Environ Int. 2018 Dec;121(Pt 1):216-226 [PMID: 30216774]
  12. Int J Environ Res Public Health. 2016 Sep 01;13(9): [PMID: 27598182]
  13. Electromagn Biol Med. 2015 Mar;34(1):19-28 [PMID: 24460417]
  14. Risk Anal. 2005 Oct;25(5):1253-64 [PMID: 16297229]
  15. Radiat Prot Dosimetry. 2012 Sep;151(3):437-42 [PMID: 22434927]
  16. Int J Environ Res Public Health. 2020 Jul 24;17(15): [PMID: 32722208]
  17. Environ Res. 2019 Jan;168:428-438 [PMID: 30390565]
  18. J Expo Sci Environ Epidemiol. 2008 Mar;18(2):183-91 [PMID: 17410112]
  19. J Expo Sci Environ Epidemiol. 2018 Mar;28(2):147-160 [PMID: 28766560]
  20. Sci Total Environ. 2018 Jun 15;627:1544-1551 [PMID: 30857115]
  21. Environ Res. 2019 May;172:109-116 [PMID: 30782530]
  22. Int J Environ Res Public Health. 2018 Oct 12;15(10): [PMID: 30321997]
  23. Environ Res. 2016 Nov;151:547-563 [PMID: 27588949]
  24. Environ Int. 2014 Jun;67:22-6 [PMID: 24632329]
  25. Sci Total Environ. 2016 Apr 15;550:987-993 [PMID: 26851884]
  26. Environ Res. 2018 Feb;161:136-143 [PMID: 29145005]
  27. Sci Total Environ. 2016 Feb 15;544:24-30 [PMID: 26657246]
  28. Int J Environ Res Public Health. 2015 Nov 06;12(11):14177-91 [PMID: 26561826]
  29. Eur J Cancer Prev. 2007 Feb;16(1):77-82 [PMID: 17220708]
  30. Prog Biophys Mol Biol. 2011 Dec;107(3):412-20 [PMID: 21856328]
  31. Health Phys. 2013 Dec;105(6):561-75 [PMID: 24162060]
  32. Environ Res. 2016 Oct;150:289-298 [PMID: 27336233]
  33. Environ Int. 2018 Aug;117:204-214 [PMID: 29754001]
  34. Sci Total Environ. 2014 Jan 15;468-469:1028-33 [PMID: 24091124]
  35. Environ Res. 2018 Jul;164:405-416 [PMID: 29573716]
  36. Environ Res. 2017 Apr;154:160-170 [PMID: 28086101]
  37. Environ Int. 2016 Jul-Aug;92-93:388-97 [PMID: 27136346]
  38. Sci Total Environ. 2013 Feb 15;445-446:202-9 [PMID: 23333516]
  39. Environ Int. 2018 Sep;118:60-69 [PMID: 29803802]
  40. Bull World Health Organ. 2010 Dec 1;88(12):887-896F [PMID: 21124713]
  41. Environ Int. 2012 Nov 1;48:133-42 [PMID: 22906414]
  42. Sci Total Environ. 2009 Dec 15;408(1):102-8 [PMID: 19819523]
  43. Int J Public Health. 2012 Aug;57(4):735-43 [PMID: 21987029]
  44. Occup Environ Med. 2009 Aug;66(8):550-6 [PMID: 19336431]
  45. Environ Int. 2013 Jan;51:116-40 [PMID: 23261519]
  46. Bioelectromagnetics. 2008 Feb;29(2):160-2 [PMID: 17929265]
  47. Environ Int. 2010 Oct;36(7):714-20 [PMID: 20538340]
  48. PLoS One. 2013 Jun 04;8(6):e62663 [PMID: 23750202]
  49. Environ Res. 2009 Aug;109(6):779-85 [PMID: 19476932]
  50. Environ Res. 2013 Oct;126:184-91 [PMID: 23759207]
  51. Sci Total Environ. 2013 Apr 15;450-451:366-8 [PMID: 22784421]
  52. Health Phys. 2020 May;118(5):483-524 [PMID: 32167495]
  53. Environ Res. 2008 Jun;107(2):277-87 [PMID: 18359015]
  54. Prog Biophys Mol Biol. 2011 Dec;107(3):449-55 [PMID: 21986474]
  55. Bioelectromagnetics. 2017 May;38(4):315-321 [PMID: 28026049]
  56. Bioelectromagnetics. 2018 Oct;39(7):529-538 [PMID: 30334586]
  57. Front Public Health. 2015 Jan 13;2:289 [PMID: 25629026]
  58. Environ Res. 2019 Aug;175:266-273 [PMID: 31146098]
  59. Environ Int. 2018 Dec;121(Pt 1):297-307 [PMID: 30227317]
  60. Bioelectromagnetics. 2012 Apr;33(3):187-206 [PMID: 22021071]
  61. Bioelectromagnetics. 2008 Sep;29(6):471-8 [PMID: 18421711]
  62. Biomed Res Int. 2015;2015:784362 [PMID: 25632400]
  63. Environ Monit Assess. 2020 Jan 2;192(2):77 [PMID: 31897614]
  64. Int J Environ Res Public Health. 2019 Sep 13;16(18): [PMID: 31540320]
  65. Environ Health. 2010 May 20;9:23 [PMID: 20487532]
  66. J Expo Sci Environ Epidemiol. 2015 Jan;25(1):37-44 [PMID: 23942394]
  67. Environ Int. 2018 May;114:297-306 [PMID: 29529581]
  68. Int J Hyg Environ Health. 2018 Apr;221(3):367-375 [PMID: 29402696]
  69. Sci Total Environ. 2017 Dec 1;599-600:834-843 [PMID: 28499231]
  70. Health Phys. 2014 Dec;107(6):503-13 [PMID: 25353235]
  71. Int J Environ Res Public Health. 2020 Mar 14;17(6): [PMID: 32183369]
  72. Bioelectromagnetics. 2013 May;34(4):300-11 [PMID: 23315952]
  73. Environ Int. 2016 Sep;94:724-735 [PMID: 27356850]
  74. Environ Res. 2019 Mar;170:493-499 [PMID: 30690250]
  75. Int J Environ Res Public Health. 2020 Jun 29;17(13): [PMID: 32610554]

MeSH Term

Cell Phone
Cities
Electromagnetic Fields
Environmental Exposure
Europe
Humans
Mexico
Radio Waves

Word Cloud

Created with Highcharts 10.0.0Wi-FiμW/mvaluesbandpersonalstudyregisteredexposureRF-EMFMexicoresultsmaximum2G5GriskperceptionRadiofrequencyElectromagneticFieldsvolunteersbandsTamazunchalemicroenvironments63homeworkplacetravelminimum9respectively=recentyearssubstantiallyincreasedstudiesdevelopedEuropebestknowledgefirstcarriedexposimetersmainobjectivemeasureWirelessFidelitywirelessInternetconnectionfrequencySanLuisPotosicomparelevelspermittedinternationalrecommendationsfinddifferencessubjectmeasurementsconducteddifferentmicroenvironments:outsideschoolsshoppingmean146511684997264additiontimeperiodtypedaynighttime129493daytime30311683caseexceededlimitsestablishedInternationalCommissionNon-IonizingRadiationProtectionICNIRPparticipantssubgroup35answeredsurveyAccordingpopulationworriedsituationcomparisonseveralEuropeancitieshoweverchangesinformedPersonalExposureAssessmentMexicanMicroenvironmentsradiofrequencyelectromagneticfieldswi-fi

Similar Articles

Cited By